This article was downloaded by: On: *26 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Organic Preparations and Procedures International Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t902189982

REGENERATION OF CARBONYL COMPOUNDS FROM OXIMES, HYDRAZONES, SEMICARBAZONES, ACETALS, 1,1-DIACETATES, 1,3-DITHIOLANES, 1,3-DITHIANES AND 1,3-OXATHIOLANES

Abdol Reza Hajipour^{ab}; Sepideh Khoee^a; Arnold E. Ruoho^b ^a Pharmaceutical Research Laboratory, College of Chemistry, Isfahan University of Technology, Isfahan, IR, IRAN ^b Dept. of Pharmacology, University of Wisconsin, Medical School, Madison, WI, USA

To cite this Article Hajipour, Abdol Reza, Khoee, Sepideh and Ruoho, Arnold E.(2003) 'REGENERATION OF CARBONYL COMPOUNDS FROM OXIMES, HYDRAZONES, SEMICARBAZONES, ACETALS, 1,1-DIACETATES, 1,3-DITHIOLANES, 1,3-DITHIOLANES AND 1,3-OXATHIOLANES', Organic Preparations and Procedures International, 35: 6, 527 – 581

To link to this Article: DOI: 10.1080/00304940309355358 URL: http://dx.doi.org/10.1080/00304940309355358

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REGENERATION OF CARBONYL COMPOUNDS FROM OXIMES, HYDRAZONES, SEMICARBAZONES, ACETALS, 1,1-DIACETATES, 1,3-DITHIOLANES, 1,3-DITHIANES AND 1,3-OXATHIOLANES

Abdol Reza Hajipour, **.** Sepideh Khoee* and Arnold E. Ruoho**

[†]Pharmaceutical Research Laboratory, College of Chemistry Isfahan University of Technology, Isfahan 84156, I.R. IRAN E-mail: arhajipour@facstaff.wisc.edu
^{††}Dept. of Pharmacology, University of Wisconsin, Medical School 1300 University Avenue, Madison, 53706-1532, WI, USA

INTRODUCTION	529
I. DEPROTECTION OF OXIMES	530
1. Deoximation with Organic Reagents	530
2. Deoximation with Supported Reagents	539
3. Deoximation under Microwave Irradiation	540
II. DEPROTECTION OF SEMICARBAZONES	
AND HYDRAZONES	541
1. Deprotection with Organic Reagents	541
2. Deprotection with Supported Reagents and/or Microwave Irradiation	548
III. DEPROTECTION OF ACETALS	549
IV. DEPROTECTION OF 1, 1-DIACETATES	558
V. DEPROTECTION OF 1, 3-DITHIOLANES AND 1,3- DITHIANES	561
VI. DEPROTECTION OF 1, 3-OXATHIOLANES	569
REFERENCES	

© 2003 by Organic Preparations and Procedures Inc.

REGENERATION OF CARBONYL COMPOUNDS FROM OXIMES, HYDRAZONES, SEMICARBAZONES, ACETALS, 1,1-DIACETATES, 1,3-DITHIOLANES, 1,3-DITHIANES AND 1,3-OXATHIOLANES

Abdol Reza Hajipour, *^{t,t†} Sepideh Khoee[†] and Arnold E. Ruoho^{††}

[†]Pharmaceutical Research Laboratory, College of Chemistry Isfahan University of Technology, Isfahan 84156, I.R. IRAN E-mail: arhajipour@facstaff.wisc.edu
^{††}Dept. of Pharmacology, University of Wisconsin, Medical School 1300 University Avenue, Madison, 53706-1532, WI, USA

INTRODUCTION

When a chemical reaction is to be carried out selectively at one site in a multifunctional compound, other reactive sites may have to be temporarily blocked. Many protective groups have been, and are being developed for this purpose. A protective group must fulfill a number of requirements. It must react selectively in good yield to give a protected substrate that is stable to the projected reactions. The protective group must be selectively removable in good yields with readily available, preferably non-toxic reagents that do not attack the regenerated functional group. The protective group should form a derivative that can be easily separated from side-products associated with its formation or cleavage. The protective group should have a minimum of additional functionality to avoid further sites of reaction (without the generation of new stere-ogenic centers). Greater control over the chemistry used in the synthesis of nature's architecturally beautiful and diverse molecular frameworks, as well as non-natural substances, is needed in view of the number of protection and deprotection steps often used to synthesize complex molecules.

Because of the order of reactivity of the carbonyl group [aldehydes (aliphatic > aromatic) > acyclic ketones and cyclohexanone > cyclopentanone > α,β -unsaturated ketones or α,α -disubstituted ketones >> aromatic ketones], it may be possible to protect a carbonyl group selectively in the presence of a less reactive one. The most useful protective groups are the acyclic and cyclic acetals and the acyclic and cyclic thioacetals. The protective group is introduced by treatment of the carbonyl compound in the presence of acid with an alcohol, diol, thiol, or dithiol. Cyclic and acyclic acetals and ketals are stable to aqueous and non-aqueous bases, to

nucleophiles including organometallic reagents, and to hydride reductions. Protection of carbonyl groups as 1,3-dithiane or 1,3-dithiolane are quite often a necessary requirement in the synthesis of multifunctional organic molecules. Thioacetals are quite stable toward a wide variety of reagents and are also useful in organic synthesis as acyl carbanion equivalents in C-C bond-forming reactions. The carbonyl group forms a number of other very stable derivatives that are less useful as protective groups because of the greater difficulty involved in their removal. Such derivatives include cyanohydrins, hydrazones, imines, oximes, and semicarbazones. It is important that these groups be introduced easily be removed under mild conditions. The aim of this review is to describe recent methods for the regeneration of carbonyl compounds from oximes, hydrazones, semicarbazones, acetals, 1,1-diacetates, 1,3-dithiolanes, 1,3-dithianes and 1,3-oxathiolanes.

I. DEPROTECTION OF OXIMES

1. Deoximation With Organic Reagents

Oximes are used frequently to protect carbonyl compounds and hence considerable attention has been given to develop methods for their preparation from the carbonyl compounds and hydroxylamine.¹ Since oximes can also be obtained from non-carbonyl compounds, their conversion to carbonyl compounds constitutes a versatile synthesis of the latter compounds.² The classical method for deprotection of oximes by hydrolytic cleavage requires the use of strong mineral acids which often results in low yields. Hence a number of oxidative methods have been developed for cleavage of oximes. Pyridinium chlorochromate (PCC) was investigated as a deoximation reagent because of its convenience and selectivity in oxidation reactions. The reaction requires two equivalents of PCC, and more than 12 h at room temperature for maximum yields. A summary of results showed in *Table 1* (entries 1, 20 and 115).³

Another oxidative method for cleavage of oximes is L_2/CH_3CN . Iodine was found to be an effective and mild reagent for conversion of both ketoximes and aldoximes to their parent carbonyl compounds. The deoximation was carried out by mixing the oxime with iodine and refluxing in acetonitrile until the reaction was completed. The wide applicability of this reagent for the conversion of different oximes to the corresponding carbonyl compounds is summarized in *Table 1* (entries 2, 21, 95 and 116).⁴

Treatment of an oxime with a mixture of sodium nitrite or nitrate and chlorotrimethylsilane in carbon tetrachloride gave the parent carbonyl compound in nearly quantitative yields. To facilitate the solubilization of the inorganic sodium salts, about 5 mole % of benzyltriethylammonium chloride or Aliquat 336 was used (see *Table 1*, entries 3-5, 22-24, 52-54 and 96-98). The deoximation did not proceed with either sodium nitrite or nitrate or chlorotrimethylsilane alone, even after prolonged heating. The actual deoximating reagent is believed to be formed from the reaction of sodium nitrite with chlorotrimethylsilane as shown in *Scheme 1*.⁵

Table 1. Deprotection of Oximes to the Carbonyl Compounds

Entry	Oximes	R	Reagent	Solvent	Temp. /Time	Yield (%)	l Ref
1		Н	PCC	CH ₂ Cl ₂	rt / 15h	56	3
2		Н	I ₂	CH ₃ CN	reflux / 3h	96	4
3		н	TMSCI+NaNO ₂	CCl₄	rt /	95	5
4		Н	TMSCI+NaNO ₃	CCl ₄	rt /	100	5
5		Н	TMSCl+BuONO	CCI ₄	rt /	94	5
6		Н	Ba(MnO ₄) ₂	CH ₃ CN	reflux /3h	85	8
7		Н	Mn(OAc) ₃	Benzene	reflux /30min	89	9
8		н	$[(\mathbf{py})_2\mathbf{Ag}]_2\mathbf{Cr}_2\mathbf{O}_7$	Benzene	reflux /10h	70	10
9		Н	CPCC	CH ₂ Cl ₂	reflux /1h	85	П
10		Н	BPCP	Benzene	reflux /0.5h	80	13
11		н	BAABCPI	CH ₃ CN	reflux /15min	98	16
12		Н	$(\mathbf{Bu}^{n}\mathbf{PPh}_{3})_{2}\mathbf{S}_{2}\mathbf{O}_{8}$	CH₃CN	reflux /25min	89	18
13		Н	BAABCPS	CH ₃ CN	reflux /20min	9 7	19
14		Н	DOWEX50	H ₂ O	reflux /5h	32	21
15		Н	Zn(BiO ₃) ₂	Toluene	reflux /1h	75	24
16		Н	BTPPMS	CH ₃ CN	reflux /50min	94	26
17		Н	Clayan	CH ₂ Cl ₂	rt / 24h	80	38
18		Н	(NH ₄) ₂ S ₂ O ₈ /SiO ₂		MW / 1.7 min	83	42
19		Н	Cu(NO ₃) ₂ /SiO ₂		MW / 5 min	95	44
20		Me	PCC	CH ₂ Cl ₂	rt / 15h	61	3
21		Me	I ₂	CH ₃ CN	reflux /4h	98	4
22		Me	TMSCl+NaNO ₂	CCl ₄	rt /	97	5
23		Me	TMSCl+NaNO3	CCl ₄	rt /	93	5
24		Me	TMSCl+BuONO	CCl ₄	rt /	96	5
25		Me	N ₂ O ₄	THF	-35°C/10min	80	7
26		Me	N ₂ O ₄	CH ₂ Cl ₂	-35°C/10min	78	7
27		Ме	Ba(MnO ₄) ₂	CH ₃ CN	reflux /4.5h	75	8
28		Me	Mn(OAc) ₃	Benzene	reflux /1h	96	9

Table 1	. Continued
---------	-------------

Entry	Oximes	R	Reagent	Solvent	Temp. /Time	Yield (%)	Ref
29		Me	$[(py)_2Ag]_2Cr_2O_7$	Benzene	reflux /8h	95	10
30		Me	CPPC	CH ₂ Cl ₂	reflux /1h	90	11
31		Me	(BnPPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	reflux/15min	97	12
32		Me	BPCP	Benzene	reflux /0.25h	100	13
33		Me	DMP	CH ₂ Cl ₂	rt/38min	92	14
34		Me	BAABCPI	CH ₃ CN	reflux /15min	100	16
35		Me	$(Bu^nPPh_3)_2S_2O_8$	CH ₃ CN	reflux /35min	96	18
36		Me	BAABCPS	CH ₃ CN	reflux /15min	100	19
37		Me	DOWEX50	H ₂ O	reflux /1h	90	21
38		Me	Zn(BiO ₃) ₂	Toluene	reflux /0.5h	80	24
39		Me	Bi(NO ₃) ₃	Acetone/H ₂ O	reflux /2h	88	25
40		Me	BTPPMS	CH ₃ CN	reflux /50min	99	26
41		Me	Ag ₂ CO ₃ /Bentonite	Benzene	reflux /3h	50	33
42		Me	Clayan	CH ₂ Cl ₂	rt / 6h	95	<u>38</u>
43		Me	ACC/Alumina	Cyclohexane	60°C/5h	85	<u>39</u>
44		Me	(BnPPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/4min	97	40
45		Me	BAABCD		Grinding/20sec	91	41
46		Me	(NH ₄) ₂ S ₂ O ₈ /SiO ₂		MW / 1.5 min	65	42
47		Me	Cu(NO ₃) ₂ /SiO ₂		MW/3 min	95	44
48		Me	NaIO ₄ /wet SiO ₂	<u></u>	MW / 1.5 min	80	43
49		Me	CrO ₃ /SiO ₂		MW / 45 sec	95	45
50		Me	BiCl ₃	THF	MW / 5 min	80	46
51		Me	BAABCD	CH ₂ Cl ₂	MW / 20 sec	91	47
52		Ph	TMSCI+NaNO ₂	CCi ₄	rt /	98	5
53		Ph	TMSCI+NaNO ₃	CCl ₄	rt /	97	5
54		Ph	TMSCl+BuONO	CCl ₄	rt /	96	5
55		Ph	N ₂ O ₄	THF	-35°C/10min	65	7
56		Ph	Ba(MnO ₄) ₂	CH ₃ CN	reflux /4.5h	80	8
57		Ph	$[(py)_2Ag]_2Cr_2O_7$	Benzene	reflux /8h	95	10
58		Ph	CPCC	CH ₂ Cl ₂	reflux /1h	95	П
59		Ph	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	reflux/30min	95	12
60		Ph	DMP	CH ₂ Cl ₂	rt/35min	94	14
61		Ph	BAABCPI	CH ₃ CN	reflux /15min	100	16
62		Ph	(Bu ⁿ PPh ₃) ₂ S ₂ O ₈	CH ₃ CN	reflux /30min	9 7	18
63		Ph	BAABCPS	CH ₃ CN	reflux /15min	97	19

Entry	Oximes	R	Reagent	Solvent	Temp. /Time	Yield (%)	Ref
64		Ph	DOWEX50	H ₂ O	reflux /3h	85	21
65		Ph	Zn(BiO ₃) ₂	Toluene	reflux /1h	85	24
66		Ph	Bi(NO ₃) ₃	Acetone/H ₂ O	reflux /3h	80	25
67		Ph	BTPPMS	CH ₃ CN	reflux /120min	95	26
68		Ph	Ag ₂ CO ₃ /Bentonite	Benzene	reflux /4h	80	33
69		Ph	Clayan	CH ₂ Cl ₂	rt / 8h	92	<i>38</i>
70		Ph	ACC/Alumina	Cyclohexane	60°C/6h	77	39
71		Ph	(Bn ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/10min	97	4 0
72		Ph	BAABCD		Grinding/35sec	88	41
73		Ph	Cu(NO ₃) ₂ /SiO ₂		MW / 2 min	95	44
74		Ph	NaIO ₄ /wet SiO ₂		MW / 1.5 min	89	4 3
75		Ph	CrO ₃ /SiO ₂		MW / 45sec	91	4 5
76		Ph	BiCl ₃	THF	MW / 2min	96	46
77		Ph	BAABCD	CH ₂ Cl ₂	MW/35sec	88	47
78		Me	N ₂ O ₄	THF	-30°C/15min	75	7
79	NOH	Me	N ₂ O ₄	CH ₃ CN	-30°C/15min	70	7
80	R	Н	Ba(MnO ₄) ₂	CH ₃ CN	reflux /4h	80	8
81	u *	Н	$(PhCH_2PPh_3)_2Cr_2O_7$	CH ₃ CN	reflux /15min	98	12
82		Н	BPCP	Benzene	reflux /1h	85	13
83		Н	BAABCPI	CH ₃ CN	reflux /15min	95	16
84		Me	$(Bu^nPPh_3)_2S_2O_8$	CH ₃ CN	reflux /40min	94	18
85		Н	$(Bu^n PPh_3)_2 S_2 O_8$	CH ₃ CN	reflux /30min	87	18
86		Н	BAABCPS	CH ₃ CN	reflux /20min	95	19
87		Н	Zn(BiO ₃) ₂	Toluene	reflux /1h	65	24
88		Me	BTPPMS	CH ₃ CN	reflux /60min	90	26
89		Н	$(BnPPh_3)_2Cr_2O_7/SiO_2$		Grinding/5min	98	40
90		Н	4-CIC ₆ H ₄ C=NOHR		Grinding/40sec	93	41
91		Н	$(NH_4)_2S_2O_8/SiO_2$		MW / 1.8 min	72	42
92		Н	NaIO ₄ /wet SiO ₂		MW / 1 min	75	43
93		Н	BiCl ₃	THF	MW / 8min	70	46
94		Н	BAABCD	CH ₂ Cl ₂	MW / 40sec	93	47
95		Н	I ₂	CH ₃ CN	reflux/3h	95	4
96	NOH II	Н	TMSCI+NaNO ₂	CCl ₄	rt /	9 7	5
97	MeO	Н	TMSCI+NaNO3	CCl ₄	rt /	94	5

Table 1. Continued...

Table 1. Co	ontinued
-------------	----------

Entry	Oximes	R	Reagent	Solvent	Temp. /Time	Yield (%)	Ref
98		н	TMSC1+BuONO	CCl ₄	rt /	97	5
99		Н	Mn(OAc) ₃	Benzene	reflux /2h	93	9
100		Н	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	reflux /5h	65	10
101		Н	CPCC	CH ₂ Cl ₂	reflux /0.75h	97	11
102		н	DMP	CH ₂ Cl ₂	rt/40min	83	14
103		н	Clayan	CH ₂ Cl ₂	rt / 22h	82	<i>3</i> 8
104		н	ACC/Alumina	Cyclohexane	35°C/2h	79	<u>39</u>
105		Me	(NH ₄) ₂ S ₂ O ₈ /SiO ₂		MW / 1.5min	59	42
106		Me	NaIO ₄ /wet SiO ₂		MW / 2min	93	<i>43</i>
107		н	BiCl ₃	THF	MW / 4min	72	46
108		н	CPCC	CH ₂ Cl ₂	reflux /4h	95	11
1 09	ЙОН	H	$(\operatorname{Bu^nPPh}_3)_2 \operatorname{S}_2 \operatorname{O}_8$	CH ₃ CN	reflux /35min	80	18
110	R	Me	DMP	CH ₂ Cl ₂	rt/40min	90	14
111	0211	Н	Zn(BiO ₃) ₂	Toluene	reflux/1h	72	24
112		Н	ACC/Alumina	Cyclohexane	35°C/2.5h	20	<i>39</i>
113		Н	(NH ₄) ₂ S ₂ O ₈ /SiO ₂		MW / 0.8min	66	42
114		Н	CrO ₃ /SiO ₂		MW / 120sec	57	45
115	Cyclohexanone oxime		PCC	CH ₂ Cl ₂	rt / 18h	47	3
116	Cyclohexanone oxime		L ₂	CH ₃ CN	reflux /3h	97	4
117	Cyclohexanone oxime		N ₂ O ₄	THF	-30°C/15min	92	7
118	Cyclohexanone oxime		CPCC	CH ₂ Cl ₂	reflux /2h	90	11
119	Cyclohexanone oxime		(BnPPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	reflux/15min	95	12
120	Cyclohexanone oxime		DMP	CH ₂ Cl ₂	rt/48min	88	14
121	Cyclohexanone oxime		BAABCPI	CH₃CN	reflux /15min	95	16
122	Cyclohexanone oxime		$(Bu^n PPh_3)_2 S_2 O_8$	CH ₃ CN	reflux /45min	92	18
123	Cyclohexanone oxime		BAABCPS	CH ₃ CN	reflux /15min	95	19
124	Cyclohexanone oxime		DOWEX50	H ₂ O	reflux /2h	87	21
125	Cyclohexanone oxime		Amberlyst 15	Acetone/H ₂ O	rt/21h	92	22
126	Cyclohexanone oxime		Zn(BiO ₃) ₂	Toluene	reflux /3h	10-15	24
127	Cyclohexanone oxime		Bi(NO ₃) ₃	Acetone/H ₂ O	reflux /2h	80	25
128	Cyclohexanone oxime		BTPPMS	CH ₃ CN	reflux /20min	85	26
129	Cyclohexanone oxime		Ag ₂ CO ₃ /Bentonite	Benzene	reflux /2h	70	33
130	Cyclohexanone oxime		ACC/Alumina	Cyclohexane	60°C/5h	80	<u>39</u>
131	Cyclohexanone oxime		(BnPPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/4min	96	40
132	Cyclohexanone oxime		BAABCD		Grinding/35sec	85	41

Entry	Oximes	R	Reagent	Solvent	Temp. /Time	Yield (%)	Ref
133	Cyclohexanone oxime		Cu(NO ₃) ₂ /SiO ₂		MW/1 min	95	44
134	Cyclohexanone oxime		NaIO₄/wet SiO ₂		MW/1 min	78	43
135	Cyclohexanone oxime		CrO ₃ /SiO ₂		MW / 69sec	87	45
136	Cyclohexanone oxime		BiCl ₃	THF	MW / 4min	82	46
137	Cyclohexanone oxime		BAABCD	CH ₂ Cl ₂	MW/35sec	85	47
138		Н	BAABCPI	CH ₃ CN	Reflux / 20min	97	16
139	оме мон	Н	BAABCPI	CH ₃ CN	reflux / 15min	99	19
140	R	Н	Amberlyst 15	H ₂ O	Reflux / 3h	88	22

Dinitrogen tetroxide reacts with several oximes at -40°C for short reaction times in aprotic solvents such as acetonitrile, tetrahydrofuran, chloroform, or carbon tetrachloride to afford the corresponding ketones in excellent yields (*Table 1*, entries 25, 26, 55, 78, 79 and 117). Dinitrogen tetroxide is known to be in equilibrium with NO⁺ and NO₃⁻ ion.⁶ The reaction appeared to be initiated by nitrosation on the nitrogen atom to form a cyclic azo intermediate, followed by ring cleavage as shown below to form the parent carbonyl compound.⁷

Heavy metal reagents have been used as another chemical method for deoximation. The recovery of the parent carbonyl compounds from the corresponding oximes requires acid hydrolysis that removes the hydroxylamine from the equilibrium. This limits the reaction to exclude acid-sensitive ketones and aldehydes.

Barium permanganate $[Ba(MnO_4)_2]$ is a stable, easily-prepared, inexpensive, nonexplosive and mild oxidizing agent introduced for the efficient deoximation of aromatic oximes. The reaction is completed by refluxing the reaction mixture in acetonitrile (*Table 1* entries 6, 27, 56 and 80).⁸ Manganese triacetate $[Mn(OAc)_3]$ is another effective and mild oxidizing agent for the regeneration of carbonyl compounds from oximes in good yield and short time (*Table 1* entries 7, 28 and 99). The general procedure illustrates the simplicity of this method. A solution of the oxime in benzene with one equivalent of manganese triacetate was refluxed for 1-2 h. The precipitated manganese diacetate was removed by filtration and then washed with water. Purification afforded the pure aldehyde or ketone.⁹

Some deoximation reactions have been carried out by chromium(VI) reagents. For example, tetrakis(pyridine)silver dichromate ([(Py)₂Ag]₂Cr₂O₇) converts oximes to the corre-

535

Table 1. Continued...

sponding carbonyl compounds in high yields and reacts selectively with aromatic oximes in the presence of aliphatic oximes (Table 1, entries 8, 29, 57 and 100).¹⁰ 3-Carboxypyridinium chlorochromate (CPCC) is an inexpensive, stable (stored for months without losing its selectivity) and easily prepared reagent by the reaction of nicotinic acid with chromium trioxide in 6N hydrochloric acid for the conversion of the aliphatic and aromatic oximes to the carbonyl compounds in refluxing dichloromethane (Table 1, entries 9, 30, 58, 101, 108 and 118).¹ Another chromium-based reagent is benzyltriphenylphosphonium dichromate [(PhCH₂PPh₃)₂Cr₂O₇]. Ketoximes and benzaldoximes are easily deprotected in refluxing acetonitrile to produce the corresponding carbonyl compounds in high yields (*Table 1*, entries 31, 59, 81 and 119).¹² A noteworthy advantage of this reagent lies in its ability to selectively oxidize oximes in the presence of other oxidizable functions such as alcohols and double bonds. 2,2'-Bipyridylchromium peroxide (BPCP) converted different oximes to the carbonyl compounds. This reagent is prepared easily by the addition of concentrated hydrogen peroxide (60%) to an acidic solution of potassium dichromate at -10° C in ether. The reaction is carried out in dry benzene by refluxing a mixture of the oxime and of BPCP for 0.3-1 h. Work-up of the mixture afforded the oxidized product in 70-100% yield (Table 1, entries 10, 32 and 82).¹³

Dess-Martin's periodinane (1,1,1-triacetoxy)-1,1-dihydro-1,2-benziodoxol-3(1H)-one 1) is one of the new reagents for the direct conversion of oximes to the corresponding carbonyl compounds (*Table 1* entries 33, 60, 102, 110 and 120).¹⁴ The salient features of this method are the rapidity of reaction at room temperature in high yields, easy work-up and mild nature of DMP. Interestingly, the α,β -unsaturated oximes underwent deoximation very efficiently without affecting the C=C bond and the reaction is essentially chemoselective. In addition, it appears that electron withdrawing and electron-donating groups do not significantly affect the rate of reaction. The major drawback of this reagent was its explosiveness under impact or heating to >200°C.

Another iodine-containing reagent is 1-benzyl-4-aza-1-azoniabicyclo[2.2.2] octane periodate (BAABCPI) 2. This reagent can convert oximes to the corresponding carbonyl compounds (*Table 1*, entries 11, 34, 61, 83, 121 and 138) and α -sulfinyl oximes 4 to β -ketosulfoxides 5 respectively (*Scheme 3*, *Table 2*, entries 1, 4, 7, 10, 13 and 16).

a) R^1 = Phenyl, R^2 = Phenyl; b) R^1 = Phenyl, R^2 = 3,4-dimethoxyphenyl; c) R^1 = *p*-Tolyl, R^2 = Phenyl; d) R^1 = *p*-Tolyl, R^2 = 3,4-dimethoxyphenyl; e) R^1 = 2-methoxy-1-naphthyl, R^2 = Phenyl; f) R^1 = 2-methoxy-1-naphthyl, R^2 = 3,4-dimethoxyphenyl

Scheme 3

β-Ketosulfoxides are very important starting materials in asymmetric synthesis and can be obtained by the cleavage of C=N bonds of α-sulfinyl oximes. In this work, the C=N double bond cleavage of α-sulfinyl oximes had an interesting advantage over the earlier work,¹⁵ since the reaction rate is rapid, proceeds in nearly quantitative yield and high optical purity.¹⁶ Benzyltriphenylphosphonium peroxodisulfate [(PhCH₂PPh₃)₂S₂O₈], is another reagent which converts α-sulfinyl oximes 4 to β-ketosulfoxides 5 in high yields and high enantiomeric purity (*Scheme 3*, *Table 2* entries 2, 5, 8, 11, 14 and 17).¹⁷ *n*-Butyltriphenylphosphonium peroxodisulfate (BuⁿPPh₃)₂S₂O₈ is a white, non-hygroscopic solid which is very stable and can be stored for months without losing its activity. It is readily and cheaply prepared by adding an aqueous solution of potassium peroxodisulfate to a solution of *n*-butyltriphenylphosphonium bromide in water-acetone (10:1). It is soluble in acetonitrile, dichloromethane and chloroform, and slightly soluble in CCl₄ and diethyl ether. The reaction with oximes carried out in acetonitrile under reflux, was complete in 20-60 minutes in nearly quantitative yield (*Table 1*, entries 12, 35, 62, 84, 85, 109 and 122).¹⁸

Table 2. Deprotection of α-Sulfinyl Oximes to β-Ketosulfoxides^a

Entry	Substrate	Reagent	Time	Yield(%)	Ee (%)	Ref
1	4a	BAABCPI	15 min	98	95	16
2	4a	$(PhCH_2PPh_3)_2S_2O_8$	45 min	96	97	17
3	4a	BAABCPS	15 min	98	95	19
4	4b	BAABCPI	20 min	95	96	16
5	4b	$(PhCH_2PPh_3)_2S_2O_8$	45 min	95	99	17
6	4b	BAABCPS	20min	95	96	<i>19</i>
7	4 c	BAABCPI	20 min	96	96	16
8	4c	(PhCH ₂ PPh ₃) ₂ S ₂ O ₈	58 min	98	100	17
9	4c	BAABCPS	20min	96	96	19
10	4d	BAABCPI	25 min	99	9 8	16
11	4 d	$(PhCH_2PPh_3)_2S_2O_8$	55 min	95	100	17
12	4d	BAABCPS	25min	99	98	<i>19</i>
13	4e	BAABCPI	30 min	95	98	16
14	4e	$(PhCH_2PPh_3)_2S_2O_8$	45 min	99	100	17
15	4e	BAABCPS	30min	95	9 8	19
16	4f	BAABCPI	30 min	95	100	16
17	4f	$(PhCH_2PPh_3)_2S_2O_8$	65 min	97	99	17
18	4f	BAABCPS	30min	95	100	19

a) All reactions at reflux in CH₃CN

bis(1-Benzyl-4-aza-1-azoniabicyclo[2.2.2]octane) persulfate (BAABCPS, **3**) converts oximes to the corresponding carbonyl compounds (*Table* 1, entries 13, 36, 63, 86, 123 and 139) and α -sulfinyl oximes **4** to β -ketosulfoxides **5** (*Scheme 3, Table* 2, entries 3, 6, 9, 12, 15 and 18).¹⁹ The C=N bond cleavage of optically active α -sulfinyl oximes by BAABCPS in acetonitrile at reflux is rapid (15-30 min) in nearly quantitative yield and high optical purity. This reagent is a mild and efficient reagent for synthesis of non-racemic chiral compounds. The advantage of this reagent is that it may be used under non-acidic and non-aqueous conditions.

However, many of the above reagents and/or the solvent systems used are toxic, corrosive or difficult to handle, especially on a large scale. With increasing environmental concerns, it is imperative that new "environment friendly" reagents be developed.²⁰ One example of such environmentally friendly reagent for the deprotection of oximes is a cation exchange resin, DOWEX 50W. Commercial Dowex 50 was soaked in 4N HCl overnight and then washed with distilled water until acid free, then used as an aqueous suspension. In a typical reaction, the oxime was heated at reflux with stirring in an aqueous suspension of Dowex 50. At the end of the reaction, the reaction mixture was steam distilled and the product was isolated in a pure state (*Table 1*, entries 14, 37, 64 and 124).²¹ Ketones were obtained readily in high yield, whereas aldehydes were formed slowly and in lower yield. The results suggest that this procedure may show considerable selectivity for the regeneration of ketones over that of aldehydes.

Another environmentally friendly reagent is Amberlyst 15, a macrorecticular ionexchange resin, which contains sulfonic groups. This procedure is carried out at room temperature or 80°C by simple dissolution of the oxime in acetone-water, with a given amount of Amberlyst 15 and stirring the mixture for 5-24 h; the yields are high and the work-up is straightforward. When acetone is used as exchange reagent, this resin is an excellent catalyst for conversion of oximes to the corresponding carbonyl compounds. (*Table 1*, entries 125 and 140).²²

Recently, bismuth derivatives have become attractive candidates in organic synthesis because most bismuth compounds are relatively non-toxic, readily available at low cost and are fairly insensitive to small amounts of water.²³ Bismuth has an electron configuration of [Xe] $4f^{14}$ $5d^{10}6s^26p^3$. Due to the weak shielding of the 4f electrons (Lanthanide contraction), bismuth (III) compounds exhibit Lewis acidity. Bismuth in the +5 state is an oxidizing agent. Recently zinc bismuthate has been reported as a mild, stable and easily prepared oxidant for the conversion of allylic and aromatic oximes to the corresponding aldehydes or ketones in refluxing toluene with high yields (*Table 1*, entries 15, 38, 65, 87, 111 and 126). Although Zn(BiO₃)₂, is not commercially available, it may be synthesized in high yield (99%) prior to use from zinc chloride and sodium bismuthate in water.²⁴

A more convenient reagent was recently reported. Bismuth nitrate pentahydrate is commercially available and requires no special handling. It is relatively non-toxic, insensitive to air and inexpensive. These features, coupled with the use of a relatively non-toxic solvent system $(H_2O$ -acetone), make this method an attractive alternative to existing routes for deprotection of

ketoximes (*Table 1* entries 39, 66 and 127),²⁵ especially in view of the particular advantage that the use of an inert atmosphere is not required for these reactions. The best yields were obtained when bismuth nitrate was mixed with montmorillonite K10. Presumably, montmorillonite K10 acts as a carrier to increase the surface area in the heterogeneous reaction. Catalytic amounts of BiCl₃ have been used for the deprotection of oximes with benzyltriphenylphosphonium peroxymonosulfate (BnPPh₃⁺HSO₅⁻, BTPPMS), (*Table* 1, entries 16, 40, 67, 88 and 128).²⁶

2. Deoximation With Supported Reagents

Though some of the above reagents are satisfactory, several involve toxic metals, some are very expensive and/or their preparation require very rigorous precautions. Others are very efficient but lack selectivity in multistep synthesis. Furthermore, the high temperature required for some reagents leads to secondary reactions. In addition many popular oxidative reagents are based on chromium and lead, which are corrosive and toxic. Moreover, the derivatives of chromium (VI) are well known carcinogens.²⁷ Deoximation may be accomplished with Dowex 50 but gives poor yields in the case of aldehydes. Heterogeneous reactions facilitated by supported reagents on various solid inorganic surfaces have the advantage that they provide greater selectivity, enhanced reaction rates, cleaner products and procedural simplicity.²⁸⁻³²

Clay-supported metal salts such as bentonite-supported silver carbonate $(Ag_2CO_3/Bentonite)$ have been used in the oxidative deblocking procedures of ketoximes. The yields are comparable with the previously reported methods (*Table 1*, entries 41, 68 and 129). Facile reaction conditions, short reaction times, and straightforward work-up are typical.³³

Ammonium nitrate is used as fertilizer^{34, 35} and in textile finishing.³⁶ Since this reagent decomposes in the environment by microorganisms, ammonium nitrate is used as a green reagent.³⁷ For example, clay supported ammonium nitrate (clayan)¹⁷ in dichloromethane has been used for the selective cleavage of aromatic oximes with electron-releasing groups on aromatic ring (Table 1, entries 17, 42, 69 and 103).³⁸ Ammonium chlorochromate adsorbed on alumina (ACC/Alumina) is a convenient method for the oxidative cleavage of oximes to the corresponding aldehydes and ketones. However, the oxidation of aromatic aldoximes bearing electron-withdrawing groups gave poor yields (Table 1, entries 43, 70, 104, 112 and 130).39 Oximes were converted to the corresponding aldehydes and ketones in cyclohexane or the cyclohexane-ether. Further oxidation of aldehydes to their carboxylic acids was not observed. In contrast, deoximation using PCC suffer from long reaction time (12-94 h) and low yields. The H2O2-PCC system is not suitable for aldoximes as over-oxidation products are usually formed. Simple grinding of silica gel supported benzyltriphenylphosphonium dichromate [(PhCH,PPh,),Cr,O₇] and oxime in a mortar for a specified time at room temperature gave the corresponding carbonyl compounds in excellent yields (*Table 1*, entries 44, 71, 89 and 131).⁴⁰ Oxime with 1-benzyl-4-aza-1-azoniabicyclo[2.2.2]octane dichromate (BAABCD) 6 in the presence of a catalytic amount of a Lewis acid such as aluminum chloride without support and solvent gave the aldehydes and ketones (*Table 1* entries 45, 72, 90 and 132).⁴¹ Notably, aldehydes did not undergo further oxidation to the carboxylic acids under the reaction conditions. Another noteworthy advantage of the reagent is the selective oxidation of oximes, in the presence of semicarbazones. When a mixture of an equimolar amount of an oxime and semicarbazone was treated with reagent **6**, only the oxime was oxidized to the corresponding carbonyl compound and the semicarbazone remained unchanged. However, treatment of an oxime in the presence of benzyl alcohol led to the exclusive oxidation of benzyl alcohol to the corresponding

aldehyde in 100% yield. Although these Cr(VI) derivatives are toxic, they are superior to the other methods from the standpoint of better yields, mild reaction conditions, straightforward work-up, short reaction time, and proceeding under non-aqueous and non-acidic conditions.

$$\begin{bmatrix} 1\\ -N\\ N\\ Ph\\ 6 \end{bmatrix} Cr_2 O_7^2 -$$

3. Deoximation Reaction Under Microwave (MW) Irradiation

Reagents impregnated on mineral supports, especially those that are efficient in dry media, have gained popularity in organic synthesis because of their selectivity and experimental simplicity. The salient features of the MW approach are the much-improved reaction rates and cleaner reactions. The microwave-assisted reactions in dry media are especially appealing as they provide an opportunity to work with open vessels, thus avoiding the risk of developing high pressure, and with good advantages for scale up.

Among the various solid supports examined, including alumina and montmorillonite K10 clay, silica gel has been found to be the best. Thus a facile deoximation procedure using silica gel doped with ammonium persulfate under microwave was reported (Table 1, entries 18, 46, 91, 105 and 113).⁴² The use of recyclable silica gel support and the general applicability of this reaction to a variety of aldoximes and ketoximes under solvent-free conditions are other attractive features of this protocol. The neat oxime (or a solution in a minimum amount of dichloromethane) is combined with silica gel and the "dry" powder is mixed with ammonium persulfate. The contents are irradiated at full power in an alumina bath in a microwave oven. After completion of the reaction, the product is extracted into dichloromethane. Microwave irradiation of ketoximes on wet silica-supported sodium periodate under solvent-free conditions provided a rapid, efficient and simple method for regeneration of ketones (Table 1, entries 48, 74, 92, 106 and 134).⁴³ Copper(II) nitrate on silica gel has also been used for the deoximation reaction under microwave irradiation (Table 1, entries 19, 47, 73 and 133).44 Silica gel supported chromium trioxide was also found to be an efficient reagent for the oxidative cleavage of oximes to the corresponding aldehydes and ketones in "dry media", under MW irradiation in a domestic microwave oven (Table 1, entries 49, 75, 114 and 135).45

In some cases, the cleavage of oximes has been carried out without any support in a small amount of solvent and in the presence of a catalytic amount of Lewis acid such as $BiCl_{3}^{46}$

or reagent 6.47 One example was deoximation of ketoximes or aldoximes with bismuth trichloride in tetrahydrofuran under microwave irradiation (*Table 1*, entries 50, 76, 93, 107 and 136).⁴ Similarly, oxime cleavage with 1-benzyl-4-aza-1-azoniabicyclo[2.2.2]octane dichromate (BAABCD, 6) in CH₂Cl₂ regenerates the corresponding carbonyl compounds in excellent yield (*Table 1*, entries 51, 47, 94 and 137).⁴⁷

II. DEPROTECTION OF SEMICARBAZONES AND HYDRAZONES

1. Deprotection With Organic Reagents

Semicarbazones, hydrazones and their derivatives are important intermediates in organic synthesis because of their use in the protection^{22, 48-55} and purification⁵⁰⁻⁵² of carbonyl compounds. Thus regeneration of carbonyl compounds from the corresponding *p*-nitrophenylhy-drazones and semicarbazones under mild conditions is an important process. Extensive studies on the deprotection of these derivatives have been carried out using various methods. For example, treatment of hydrazones with dinitrogen tetroxide (N₂O₄) at low temperature in acetonitrile gave the corresponding ketones in excellent yields (*Table 3*, entries 1, 33, 103, 108 and 121).⁷

Entry	Ar	R	x	Reagent	Solvent	Temp./Time	Yield (%)	Ref
1	Ph	Me	NH ₂	N ₂ O ₄	CH ₃ CN	-40°C/10min	91	7
2	Ph	Ме	NHPh	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	Reflux/8h	70	10
3	Ph	Me	4-NPH	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/10h	40	10
4	Ph	Me	2,4-DNPH	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	Reflux/4h	65	10
5	Ph	Me	NHC(O)NH ₂	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/10h	70	10
6	Ph	Me	NHPh	CPCC	CH ₃ CN	Reflux/1h	92	11
7	Ph	Me	4-NPH	CPCC	CH ₃ CN	Reflux/1.5h	83	11
8	Ph	Me	NHC(O)NH ₂	CPCC	CH ₃ CN	Reflux/2.5h	87	11
9	Ph	Me	NHC(O)NH ₂	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/30min	81	57
10	Ph	Me	NHTs	DMP	CH ₂ Cl ₂	rt/80min	87	14
11	Ph	Me	NHPh	BAABCP	CH ₃ CN	Reflux/45min	9 8	58
12	Ph	Ме	N(Me) ₂	BAABCP	CH ₃ CN	Reflux/30min	95	58
13	Ph	Me	NHC(O)NH ₂	BAABCP	CH ₃ CN	Reflux/120min	25	58
14	Ph	Me	NHPh	(Bu ⁿ PPh ₃) ₂ S ₂ O ₈	CH ₃ CN	Reflux/45min	96	18
15	Ph	Me	4-NPH	$(Bu^nPPh_3)_2S_2O_8$	CH ₃ CN	Reflux/40min	93	18
16	Ph	Me	NHC(O)NH ₂	(Bu ⁿ PPh ₃) ₂ S ₂ O ₈	CH ₃ CN	Reflux/40min	83	18
17	Ph	Me	NHPh	(PhCH2PPh3)2Cr2O2	CH ₃ CN	Reflux/15min	98	12
18	Ph	Me	N(Me) ₂	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/20min	95	12

Table 3. Deprotection of Semicarbazones and Hydrazones Derivatives (ArC(NX)R)

19	Ph	Me	NHC(O)NH ₂	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/40min	80	12
20	Ph	Me	NHC(O)NH ₂	BTPPMS	CH ₃ CN	Reflux/60min	95	26
21	Ph	Me	2,4-DNPH	BTPPMS	CH ₃ CN	Reflux/360min	40	26
22	Ph	Me	NHC(O)NH ₂	DOWEX-50	H ₂ O	Reflux/1h	96	21
23	Ph	Me	NHC(O)NH ₂	ACC/Alumina	Acetone/H ₂ O	80°C/10h	90	22
24	Ph	Me	4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/4h	97	59
25	Ph	Me	4-NPH	ACC/Alumina	Ether/DMSO	Reflux/1h	90	59
26	Ph	Me	NHPh	$(PhCH_2PPh_3)_2Cr_2O_7$		Grinding/4min	98	40
27	Ph	Me	N(Me) ₂	$(PhCH_2PPh_3)_2Cr_2O_7$		Grinding/8min	98	40
28	Ph	Me	NHC(O)NH ₂	$(PhCH_2PPh_3)_2Cr_2O_7$		Grinding/10min	92	40
29	Ph	Me	NHC(O)NH ₂	(NH ₄) ₂ S ₂ O ₈ /clay		MW/0.6min	72	67
30	Ph	Me	NHC(O)NH ₂	(NH ₄) ₂ S ₂ O ₈ /clay		US/0.75h	77	67
31	Ph	Me	NHPh	(NH ₄) ₂ S ₂ O ₈ /clay		MW/0.5min	71	67
32	Ph	Me	NHPh	(NH ₄) ₂ S ₂ O ₈ /clay		US/1.50h	82	67
33	Ph	Ph	NH ₂	N ₂ O ₄	CH ₃ CN	-40°C/10min	85	7
34	Ph	Ph	NHPh	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	Reflux/10h	50	10
35	Ph	Ph	4-NPH	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	Reflux/10h	70	10
36	Ph	Ph	2,4-DNPH	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	Reflux/6h	80	10
37	Ph	Ph	NHPh	CPCC	CH ₃ CN	Reflux/1h	98	11
38	Ph	Ph	4-NPH	CPCC	CH ₃ CN	Reflux/2h	85	11
39	Ph	Ph	NHC(O)NH ₂	CPCC	CH ₃ CN	Reflux/2.5h	89	11
40	Ph	Ph	NHC(O)NH2	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/30min	64	57
41	Ph	Ph	NHPh	BAABCP	CH ₃ CN	Reflux/60min	98	58
42	Ph	Ph	4-NPH	BAABCP	CH ₃ CN	Reflux/120min	45	58
43	Ph	Ph	N(Me) ₂	BAABCP	CH ₃ CN	Reflux/25min	98	58
44	Ph	Ph	NHPh	$(Bu^nPPh_3)_2S_2O_8$	CH ₃ CN	Reflux/30min	98	18
45	Ph	Ph	4-NPH	$(Bu^nPPh_3)_2S_2O_8$	CH ₃ CN	Reflux/45min	90	18
46	Ph	Ph	NHC(O)NH ₂	$(\mathbf{Bu^nPPh_3})_2\mathbf{S_2O_8}$	CH ₃ CN	Reflux/35min	89	18
47	Ph	Ph	NHPh	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/30min	95	12
48	Ph	Ph	4-NPH	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/30min	85	12
49	Ph	Ph	N(Me) ₂	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/20min	91	12
50	Ph	Ph	NHC(O)NH ₂	BTPPMS	CH ₃ CN	Reflux/150min	85	26
51	Ph	Ph	NHC(O)NH ₂	DOWEX-50	H ₂ O	Reflux/3h	90	21
52	Ph	Ph	4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/4h	97	59
53	Ph	Ph	NHPH	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/10min	92	40
54	Ph	Ph	4-NPH	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/10min	92	40
55	Ph	Ph	N(Me) ₂	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/8min	96	40
56	Ph	Ph	NHC(O)NH ₂	BAABCD	****	Grinding/35sec	90	41

REGENERATION OF CARBONYL COMPOUNDS

57	Ph	Н	NHPh	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/8h	40	10
58	Ph	Н	4-NPH	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/10h	60	10
59	Ph	Н	NHPh	CPCC	CH ₃ CN	Reflux/1.5h	71	П
60	Ph	Н	4-NPH	CPCC	CH ₃ CN	Reflux/1h	70	11
61	Ph	Н	NHC(O)NH2	CPCC	CH ₃ CN	Reflux/1h	80	11
62	Ph	Н	NHC(O)NH ₂	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/90min	51	57
63	Ph	Н	NHC(O)NH ₂	BAABCP	CH ₃ CN	Reflux/80min	35	58
64	Ph	Н	NHC(O)NH ₂	DOWEX-50	H ₂ O	Reflux/5h	20	21
65	Ph	н	NHC(O)NH2	ACC/Alumina	CH ₂ Cl ₂	Reflux/4h	72	59
66	Ph	Н	4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/3h	79	59
67	Ph	Н	NHTs	Clayfen	CH ₂ Cl ₂	rt/?	79	60
68	Ph	Н	NHPh	Clayfen	CH ₂ Cl ₂	rt/?	83	60
69	Ph	Н	2,4-DNPH	Clayfen	CH ₂ Cl ₂	rt/?	69	60
70	Ph	н	4-NPH	PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/10min	97	40
71	4-MeOC ₆ H ₄	Н	NHPh	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/6h	45	10
72	4-MeOC ₆ H ₄	н	4-NPH	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/8h	30	10
73	4-MeOC ₆ H ₄	н	2,4-DNPH	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/5h	40	10
74	4-MeOC ₆ H ₄	Н	NHC(O)NH ₂	$[(py)_2Ag]_2Cr_2O_7$	Benzene	Reflux/5h	25	10
75	4-MeOC ₆ H ₄	Н	NHPh	CPCC	CH ₃ CN	Reflux/1h	80	11
76	4-MeOC ₆ H ₄	Н	4-NPH	CPCC	CH ₃ CN	Reflux/1h	75	11
77	$4-MeOC_6H_4$	Н	NHC(O)NH ₂	CPCC	CH ₃ CN	Reflux/0.75h	76	П
78	4-MeOC ₆ H ₄	Н	NHC(O)NH ₂	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/90min	88	57
79	$4-MeOC_6H_4$	Н	NHPh	BAABCP	CH ₃ CN	Reflux/45min	97	58
80	4-MeOC ₆ H ₄	Н	4-NPH	BAABCP	CH ₃ CN	Reflux/100min	45	58
81	4-MeOC ₆ H ₄	Н	N(Me) ₂	BAABCP	CH ₃ CN	Reflux/25min	96	58
82	4-MeOC ₆ H ₄	Н	NHC(O)NH ₂	BAABCP	CH ₃ CN	Reflux/100min	45	58
83	$4-MeOC_6H_4$	Me	NHPh	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/25min	96	12
84	$4-MeOC_6H_4$	Н	4-NPH	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/30min	85	12
85	$4-MeOC_6H_4$	Me	N(Me) ₂	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/35min	98	12
86	$4-MeOC_6H_4$	Me	NHC(O)NH ₂	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/40min	85	12
87	$4-MeOC_6H_4$	Me	2,4-DNPH	BTPPMS	CH ₃ CN	Reflux/240min	20	26
88	$4-MeOC_6H_4$	н	4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/2.6h	82	59
89	$4-MeOC_6H_4$	Н	4-NPH	PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/10min	90	40
90	$4-MeOC_6H_4$	Me	NHPh	$PhCH_2PPh_3)_2Cr_2O_7\!/SiO_2$		Grinding/7min	98	40
91	$4-MeOC_6H_4$	Me	N(Me) ₂	PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/15min	95	40
92	$4-MeOC_6H_4$	Me	2,4-DNPH	PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇ /SiO ₂		Grinding/15min	95	40
93	4-MeOC ₆ H ₄	Me	NHC(O)NH ₂	(NH ₄) ₂ S ₂ O ₈ /clay		MW/0.9min	78	67
94	4-MeOC ₆ H ₄	Me	NHC(O)NH2	(NH ₄) ₂ S ₂ O ₈ /clay		US/3h	88	67

95	3,4-(MeO) ₂ C ₆ H ₃	н	NHC(O)NH ₂	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/30min	88	57
96	3,4-(MeO) ₂ C ₆ H ₃	Me	NHPh	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/25min	95	12
97	3,4-(MeO) ₂ C ₆ H ₃	Me	N(Me) ₂	$(PhCH_2PPh_3)_2Cr_2O_7$	CH ₃ CN	Reflux/25min	100	12
98	3,4-(MeO) ₂ C ₆ H ₃	Me	NHC(O)NH ₂	(PhCH ₂ PPh ₃) ₂ Cr ₂ O ₇	CH ₃ CN	Reflux/25min	70	12
99	3,4-(MeO) ₂ C ₆ H ₃	н	NHPh	BTPPMS	CH ₃ CN	Reflux/210min	30	26
100	3,4-(MeO) ₂ C ₆ H ₃	Me	NHPh	BTPPMS		Grinding/10min	95	26
101	3,4-(MeO) ₂ C ₆ H ₃	н	NHPh	BTPPMS		Grinding/10min	100	40
102	3,4-(MeO) ₂ C ₆ H ₃	Н	NHPh	BTPPMS		Grinding/15min	80	40
103	$4-NO_2C_6H_4$	Н	NH ₂	N ₂ O ₄	CH ₃ CN	0°C/30min	94	7
104	$4-NO_2C_6H_4$	Н	NHC(O)NH ₂	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/390min	7	57
105	$4-\mathrm{NO}_{2}\mathrm{C}_{6}\mathrm{H}_{4}$	Me	NHC(O)NH2	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/270min	82	57
106	$4-NO_2C_6H_4$	Me	4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/5h	80	59
107	$4-NO_2C_6H_4$	H	4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/3h	65	59
108	4-CIC ₆ H ₄	H	NH ₂	N ₂ O ₄	CH ₃ CN	-40°C/10min	95	7
109	4-ClC ₆ H ₄	Me	NHPh	CPCC	CH ₃ CN	Reflux/1.25h	90	11
110	4-ClC ₆ H ₄	Me	4-NPH	CPCC	CH3CN	Reflux/2h	84	11
111	4-CIC ₆ H ₄	Н	NHC(O)NH ₂	CuCl ₂ •2H ₂ O	CH₃CN	Reflux/240min	61	57
112	4-ClC ₆ H ₄	Me	NHC(O)NH ₂	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/60min	71	57
113	4-ClC ₆ H ₄	Me	4-NPH	BAABCP	CH ₃ CN	Reflux/120min	10	58
114	4-ClC ₆ H ₄	Н	NHPh	(Bu ⁿ PPh ₃) ₂ S ₂ O ₈	CH ₃ CN	Reflux/30min	77	18
115	4-ClC ₆ H ₄	Н	4-NPH	$(Bu^nPPh_3)_2S_2O_8$	CH ₃ CN	Reflux/35min	72	18
116	4-CIC ₆ H ₄	н	NHC(O)NH ₂	$(Bu^nPPh_3)_2S_2O_8$	CH ₃ CN	Reflux/45min	73	18
117	4-ClC ₆ H ₄	Me	NHC(O)NH ₂	(NH ₄) ₂ S ₂ O ₈ /clay		MW/1.8min	82	67
118	4-CIC ₆ H ₄	Me	NHC(O)NH ₂	(NH ₄) ₂ S ₂ O ₈ /clay		US/3h	90	67
119	4-MeC ₆ H ₄	н	NHTs	Amberlyst 15	Acetone/H ₂ O	80°C/24h	86	22
120	4-MeC ₆ H ₄		2,4-DNPh	Amberlyst 15	Acetone/H ₂ O	80°C/23h	61	22
121	4-MeC ₆ H ₄	н	NH ₂	N ₂ O ₄	CH ₃ CN	-35°C/10min	94	7
122	4-MeC ₆ H ₄	н	NHC(O)NH ₂	(NH ₄) ₂ S ₂ O ₈ /clay		MW/2min	69	67
123	4-MeC ₆ H ₄	Н	NHC(O)NH ₂	(NH ₄) ₂ S ₂ O ₈ /clay		US/3h	68	67
124	4-BrC ₆ H ₄		2,4-DNPH	BTPPMS	CH ₃ CN	Reflux/300min	40	26
125	4-BrC ₆ H ₄		NHC(O)NH ₂	BTPPMS	CH ₃ CN	Reflux/120min	93	26
126	4-BrC ₆ H ₄		4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/3h	70	59
127	4-BrC ₆ H ₄		NHC(O)NH ₂	BAABCD		Grinding/50sec	87	41
128	3-ClC ₆ H ₄	Me	NHC(O)NH2	BAABCD		Grinding/50sec	87	41
12 9	3-NO ₂ C ₆ H ₄	Me	NHC(O)NH ₂	BAABCD		Grinding/50sec	91	41
130	3-MeOC ₆ H ₄	Me	NHC(O)NH ₂	BAABCD		Grinding/50sec	92	41
131	-(CH ₂) ₅ -		NHC(O)NH2	CuCl ₂ •2H ₂ O	CH ₃ CN	Reflux/15min	71	57
132	-(CH ₂) ₄ -		NHTs	DMP	CH ₂ Cl ₂	rt/90min	91	14

133	-(CH ₂) ₅ -	 NHC(O)NH ₂	DOWEX-50	H ₂ O	Reflux/2h	90	21
134	-(CH ₂) ₆ -	 NHTs	Amberlyst 15	Acetone/H ₂ O	rt/23h	90	22
135	-(CH ₂) ₅ -	 NHC(O)NH ₂	ACC/Alumina	CH ₂ Cl ₂	Reflux/6h	72	59
136	-(CH ₂) ₅ -	 NHC(O)NH ₂	ACC/Alumina	Ether	Reflux/0.5h	97	59
137	-(CH ₂) ₄ -	 4-NPH	ACC/Alumina	CH ₂ Cl ₂	35-40°C/6h	90	59
138	-(CH ₂) ₅ -	 NHTs	Clayfen	CH ₂ Cl ₂	rt/?	76	60
139	-(CH ₂) ₅ -	 NHPh	Clayfen	CH ₂ Cl ₂	rt/?	87	60
140	-(CH ₂) ₅ -	 2,4-DNPH	Clayfen	CH ₂ Cl ₂	rt/?	78	60
141	Fluorene	 2,4-DNPH	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	Reflux/6h	83	10
142	Fluorene	 NHC(O)NH ₂	[(py) ₂ Ag] ₂ Cr ₂ O ₇	Benzene	Reflux/6h	55	10

NHTs = Tosylhydrazone, NHPh = phenylhydrazone, 4-NPH = p-nitrophenylhydrazone, 2,4-DNPH = 2,4-dinitrophenylhydrazone and NH(CO)NH₂ = semicarbazone

Oxidation of semicarbazones of benzaldehydes and acetophenones by potassium bromate [Br(V)] yields the respective aldehydes or ketones in good yield at ambient temperature. The rates of reaction are only slightly influenced by the change in substituents on the phenyl ring or by the polarity of the medium, suggesting that the intermediate is probably as polar as the reactants. The reaction possibly proceeds in the slow step *via* a *N*-bromate ester whose formation is generally less susceptible to electronic effects (*Scheme 4*).⁵⁶

Some deprotection reactions of semicarbazones and hydrazones may be carried out by Cr(VI) based reagents. Phenylhydrazones, 4-nitrophenylhydrazones, 2,4-dinitrophenylhydrazones and semicarbazones were converted to the corresponding carbonyl compounds with tetrakis(pyridine)silver dichromate in benzene ($[Py)_2Ag]_2Cr_2O_7$) (*Table 3*, entries 2, 34, 57 and 71 for phenylhydrazones; 3, 35, 58 and 72 for 4-nitrophenylhydrazones; 4, 36, 73 and 141 for 2,4-dinitrophenylhydrazones and 5, 74 and 142 for semicarbazones).¹⁰

3-Carboxypyridinium chlorochromate (CPCC) is a convenient reagent for conversion of phenylhydrazones, *p*-nitrophenylhydrazones and semicarbazones to the corresponding carbonyl compounds (*Table 3*, entries 6, 37, 59, 75 and 109 for phenyl-hydrazones, 7, 38, 60, 76 and 110 for 4-nitrophenylhydrazones, 8, 39, 61 and 77 for semicarbazones).¹¹ Benzyltriphe-

nylphosphonium dichromate $[(PhCH_2PPh_3)_2Cr_2O_7]$ is able to oxidize substituted hydrazones and semicarbazones to the corresponding carbonyl compounds (*Table 3*, entries 17, 47, 83 and 96 for phenylhydrazones, 48 and 84 for 4-nitrophenylhydrazones, 18, 49, 85 and 97 for *N*,*N*-dimethylhydrazones and 19, 86 and 98 for semicarbazones).¹²

A suspension of semicarbazones and hydrated Cu(II) chloride in acetonitrile affords carbonyl compounds in high yields after reflux (*Table 3*, entries 9, 40, 62, 78, 95, 104, 105, 111, 112 and 131). No additional amount of water is required; the water of hydration was sufficient to accomplish the hydrolysis. It was suggested that Cu(II) ion forms monocyclic chelates with semicarbazones and semicarbazides through the imino/terminal amino nitrogen and the carbonyl oxygen. Thus, in light of these indications, it is believed that Cu(II) ion would exert a favorable effect on the hydrolysis of semicarbazones *via* chelation at the imino nitrogen by making the latter more electrophilic as well as by stabilizing the leaving group in the transition state (*Scheme 5*).⁵⁷

Dess-Martin's periodinane 1 (DMP) is an iodine-based reagent for the regeneration of carbonyl compound from tosylhydrazones (*Table 3*, entries 10 and 132).¹⁴ This reagent is a mild and selective oxidizing compound for the oxidation of primary and secondary alcohols to aldehydes and ketones and for direct conversion of oximes and tosylhydrazones to the corresponding carbonyl compounds. It is noteworthy that, unlike other oxidative hydrolytic methods, the major drawback of over-oxidation of the resulting aldehydes is not observed under the reaction conditions and thus this reagent possesses significant advantages over the existing methods such as simple procedure, high yields, reduced reaction times and mild conditions.

Another iodine-based reagent is 1-benzyl-4-aza-1-azoniabicyclo[2.2.2]octane periodate (2, BAABCPI). This reagent converts phenylhydrazones, *p*-nitrophenylhydrazones and semicarbazones to the corresponding carbonyl compounds (*Table 3*, entries 11, 41 and 79 for phenylhydrazones; entries 42, 80 and 113 for 4-nitrophenylhydrazones; entries 12, 43 and 81 for *N*,*N*-dimethylhydrazones and 13, 63 and 82 for semicarbazones) and β -ketosulfoxide hydrazones 7 to β -ketosulfoxides 4 respectively (*Scheme 6*, *Table 4*, entries 1, 3, 5, 7, 9 and 11).⁵⁸ Benzyltriphenylphosphonium peroxodisulfate [(PhCH₂PPh₃)₂S₂O₈] can also convert β ketosulfoxide hydrazones 7 to the corresponding β -ketosulfoxides 4 (*Scheme 6*, *Table 4*, entries 2, 4, 6, 8, 10 and 12).¹⁷

Entry	Substrate	Reagent	Time	Yield(%)	Ee (%)	Ref
1	7a	BAABCPI	20 min	98	95	58
2	7a	(PhCH ₂ PPh ₃) ₂ S ₂ O ₈	60 min	98	95	17
3	7b	BAABCPI	20 min	100	96	58
4	7b	(PhCH ₂ PPh ₃) ₂ S ₂ O ₈	65 min	98	96	17
5	7c	BAABCPI	25 min	96	96	58
6	7c	(PhCH ₂ PPh ₃) ₂ S ₂ O ₈	60 min	95	98	17
7	7d	BAABCPI	25 min	99	98	58
8	7d	(PhCH ₂ PPh ₃) ₂ S ₂ O ₈	60 min	97	98	17
9	7e	BAABCPI	30 min	95	98	58
10	7e	(PhCH ₂ PPh ₃) ₂ S ₂ O ₈	65 min	97	100	17
11	7f	BAABCPI	30 min	95	100	58
12	7f	(PhCH ₂ PPh ₃) ₂ S ₂ O ₈	80 min	99	100	17

Table 4. Deprotection of β-Ketosulfoxide Hydrazones to β-Ketosulfoxides^a

a) All reactions at reflux in CH₃CN

a) R^1 = Phenyl, R^2 = Phenyl; b) R^1 = Phenyl, R^2 = 3,4-dimethoxyphenyl; c) $R^1 = p$ = Tolyl, R^2 = Phenyl; d) $R^1 = p$ -Tolyl, R^2 = 3,4-dimethoxyphenyl; e) R^1 = 2-methoxy-1-naphthyl, R^2 = Phenyl; f) R^1 = 2-methoxy-1-naphthyl, R^2 = 3,4-dimethoxyphenyl

Scheme 6

n-Butyltriphenylphosphonium peroxodisulfate $[(nBuPPh_3)_2S_2O_8]$ is another peroxodisulfate-based reagent which provides an efficient and general method for the cleavage of the C=N bond of phenylhydrazones, *p*-nitrophenylhydrazones and semicarbazones under non-aqueous and aprotic conditions (*Table 3*, entries 14, 44 and 114 for phenylhydrazones; 15, 45 and 115 for 4-nitrophenylhydrazones and 16, 46 and 116 for semicarbazones).¹⁸ Benzyltriphenylphosphonium peroxymonosulfate (BnPPh₃⁺HSO₅⁻, BTPPMS), in the presence of BiCl₃ is an efficient reagent for the conversion of phenylhydrazones, 2,4-dinitrophenylhydrazones; 21, 87 and 124 for 2,4-dinitrophenylhydrazones and 20, 50 and 125 for semicarbazones).²⁶

An aqueous suspension form of cation exchange resin Dowex-50 has been used for the deprotection of semicarbazones (*Table 3*, entries 22, 51, 64 and 133).²¹ This procedure shows impressive selectivity for the regeneration of ketones in preference to aldehydes (*Table 3*, entries 22, 51, 64 and 133).²¹. Treatment of a mixture of an equal amount of the acetophenone semicarbazone and benzaldehyde semicarbazone with Dowex-50 for 1 h, gave a quantitative yield of

acetophenone with only a trace of benzaldehyde.²¹ This technique of selective deblocking of a ketone in the presence of an aldehyde can serve as an alternative to the Luche reaction.²¹

Various tosylhydrazones, 2,4-dinitrophenylhydrazones and semicarbazones were converted into the corresponding carbonyl compounds in mostly quantitative yields by Amberlyst 15, a macroreticular ion-exchange resin that contains sulfonic acid, *via* equilibrium exchange with aqueous acetone (*Table 3*, entries 119 and 134 for tosylhydrazones; 120 for 2,4-dinitrophenylhydrazone and 23 for semicarbazones).²² In this method, groups which are acid-sensitive such as furyl derivatives, esters or ethers survive and, above all, excellent results are obtained in aldehyde regeneration. Combination of Amberlyst 15 with acetone is one of the most convenient of existing methods for carbonyl regeneration from nitrogenous derivatives, on the basis of its simplicity and cheapness and the high yields obtained (>85%) with a large variety of derivatives, under mild conditions.

Deprotection of *p*-nitrophenylhydrazones and semicarbazones in good yields has been carried out with ammonium chlorochromate adsorbed on alumina (ACC/alumina) under mild conditions (*Table 3*, entries 24, 52, 66, 88, 106, 107, 126 and 137 for 4-nitrophenylhydrazones and 25, 65, 135 and 136 for semicarbazones).⁵⁹ Tosylhydrazones, phenylhydrazones, 2,4-dinitrophenylhydrazones and semicarbazones could be cleanly cleaved in good yields (*Table 3*, entries 67 and 138 for tosylhydrazones; 68 and 139 for phenylhydrazones and 69 and 140 for 2,4-dinitrophenylhydrazones) with an extremely inexpensive clay-supported ferric nitrate ("Clayfen") under very mild conditions.⁶⁰

2. Deprotection With Supported Reagents and/or Microwave Irradiation

In recent years, organic reactions on solid support and those that are assisted by microwave, especially under solvent-less conditions, have attracted attention because of their enhanced selectivity, milder reaction conditions and associated ease of manipulation. In continuation of the efforts in this area, some simple oxidative cleavages of semicarbazones and derivatives of hydrazones have been reported. Benzyltriphenylphosphonium dichromate $[(PhCH_2PPh_3)_2Cr_2O_7]$ supported on silica gel converts substituted hydrazones to the corresponding carbonyl compounds in excellent yields (*Table 3*, entries 26, 53, 90 and 100 for phenyl-hydrazones; 27, 55, 91 and 101 for *N*,*N*-dimethylhydrazones; 54 and 70 for 4-nitrophenylhydrazone; 92 for 2,4-dinitrophenylhydrazones and 28, 93 and 102 for semicarbazones).⁴⁰

1-Benzyl-4-aza-1-azoniabicyclo[2.2.2]octane dichromate (6, BAABCD) is another Cr(VI)-based reagent for selective conversion of semicarbazones to the corresponding carbonyl compounds, under solvent-free conditions and without any support but in the presence of a catalytic amount of aluminum chloride (*Table 3*, entries 56 and 127-130).⁴¹

Semicarbazones and phenylhydrazones were also deprotected via simple oxidation with ammonium persulfate and montmorillonite K10 clay and accelerated by microwave or ultrasonic irradiation. Ammonium persulfate is an inexpensive and readily accessible oxidizing agent. It is commonly used in industry for bleaching 61 and for wastewater treatment. 62 However, only scant literature is available that describes its applications in organic synthesis. $^{61-66}$ In view of the established beneficial effects of reagents on solid supports, a variety of mineral supports such as alumina, clay and silica for ammonium persulfate have been examined and it was soon discovered that montmorillonite K10 clay provides the clean regeneration of the corresponding ketones (*Table 3*, entries 31 and 32 for phenylhydrazones using microwave and ultrasonic irradiation respectively, 29, 93, 117 and 122 for semicarbazones using microwave irradiation and 30, 94, 118 and 123 for semicarbazones using ultrasonic irradiation). The mechanism of the above transformation probably involves the decomposition of ammonium persulfate on clay (which is acidic and contains water) under the influence of microwaves, as shown in *Scheme* 7.⁶⁷

III. DEPROTECTION OF ACETALS

Acetals are among the most useful and versatile protecting groups in organic synthesis. They find widespread application in the protection of carbonyl, hydroxy and diol functions. For this reason, the protection and deprotection of the carbonyl functional group remains a crucial challenge to organic chemists. Experience shows that the critical parameters are generally the stability and the cleavage of the protecting group rather than its introduction. Therefore regeneration of the parent carbonyl group from the masked form is a useful synthetic process. There are several methods for the deprotection of acetals and ketals such as aqueous acid hydrolysis.¹ However, very often this method is incompatible with the presence of some other functional group in the molecule such as a protected hydroxyl group.

To overcome the problem, several non-acidic cleaving methods for acetals have been employed. Partial hydrolysis has been occasionally mentioned as an inconvenience in the chromatography of acetals on silica gel or alumina columns. Indeed, it has been shown that, hydrolysis on wet silica is a very convenient procedure for the regeneration of carbonyl compounds from corresponding acetals (*Table 5*, entries 1, 2, 33 and 34).⁶⁸ The results show that, when acetals are simply shaken with a small amount of wet silica gel or acidic wet silica gel, they readily convert to the corresponding carbonyl compounds; the later are easily isolated from the

silica gel by filtration, solvent washing and evaporation. The rate of hydrolysis is rapid for dialkylacetal or α,β -unsaturated carbonyl compounds with wet silica gel only (0.25-3 h); α,β unsaturated dioxolanes are hydrolyzed to the corresponding carbonyl compounds using wet silica gel with small amount of oxalic acid in 0.5-3 h; finally, acetals of saturated ketones equally need wet silica gel with oxalic acid or even sulfuric acid. The usefulness of such a deacetalization method, particularly for acetal of α,β -unsaturated carbonyl compounds consists of a) simplicity of operation, b) possibility of selective deacetalization of unsaturated over saturated acetals; c) straightforward isolation of pure carbonyl product; and d) obtaining the carbonyl compounds which are unstable in acidic medium.

An aqueous method utilizing phosphorous triiodide and diphosphorous tetraiodide has been reported for deprotection of acetals. The reactions were particularly easy with 1,1dimethoxyalkanes, on stirring at room temperature for about 15 minutes in dichloromethane with approximately 0.3 or 0.4 molar equivalent, respectively, of P_2I_4 or PI_3 .⁶⁹ These data are summarized in *Table 5* (entries 26, 28, 35 and 59 for P_2I_4 and entries 27, 29, 36 and 60 for PI_{33}). This method failed to deprotect the dioxolane moiety even under these conditions.

Titanium(IV) chloride in diethyl ether at room temperature can effectively deprotect acetals, including dioxolanes, under mild conditions (*Table 5*, entries 3, 4, 37, 38 and 42), sometimes in the presence of lithium iodide; with regard to the mechanism of these conversions of acetals to carbonyl compounds, different processes can be proposed depending on the structure of starting acetals (*Scheme 8*). The first process (A) would be operative with an acetal of an

aromatic aldehyde where an intermediate cationic species is stabilized, the second case (B) concerns the aliphatic acetals that require lithium iodide to be converted to the parent ketone and process (C) was proposed in the case of ethylene ketals.⁷⁰

These processes have been used for the selective deprotection of ethylene acetal groups in the presence of THP ethers. The dimethylacetal of benzaldehyde is rapidly cleaved at room temperature by treatment with a 0.5 molar equivalent of $TiCl_4$. However, the same conditions failed with the dimethylacetal of saturated aldehydes or ketones after 4 h. The rate of conversion of the dimethylacetal of saturated aldehydes or ketones is greatly increased by addition of one equivalent of lithium iodide, and the corresponding carbonyl compounds is subsequently obtained in good yield. Other results show that the first process is also effective for dioxolanes, which are rapidly deprotected in the presence of a slight molecular excess of TiCl₄. An efficient and versatile approach for the cleavage of acetals under non-acidic and aprotic conditions uses the dropwise addition of a CH_2Cl_2 solution of either dimethylboron bromide or diphenylboron bromide to a cold (-78°C), stirred solution of acetals in dry methylene chloride (*Table 5*, entries 5, 6, 39 and 40).⁷¹

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield Ref (%)	
1 8.0 08	$R_1 = R_2 = -(CH_2) - 2, n=0$	Wet silica gel	CH ₂ Cl ₂	rt/3h	98	68
2	$R_1 = R_2 = -(CH_2) - 2, n = 1$	Wet silica gel	CH ₂ Cl ₂	rt/lh	82	68
3	$R_1 = R_2 = -(CH_2) - 2, n = 1$	TiCl ₄	Et ₂ O	rt/20h	75	70
4	$R_1 = R_2 = CH_3, n=1$	CuCl ₂ •2H ₂ O	CH ₃ CN	rt/30min	85	88
5	$R_1 = R_2 = CH_3 n=3$	Me ₂ BBr	CH ₂ Cl ₂	-78°C/1h	93	71
6	$R_1 = R_2 = -(CH_2) - 2, n=3$	Me ₂ BBr	CH ₂ Cl ₂	-78°C/1h	92	71
7	$R_1 = R_2 = -(CH_2) - 2, n=0$	PdCl ₂ (CH ₃ CN) ₂	Acetone	rt/0.33h	100	72
8	$R_1 = R_2 = -(CH_2) - 2, n = 1$	PdCl ₂ (CH ₃ CN) ₂	Acetone	rt/30h	9 0	72
9	$R_1 = R_2 = -(CH_2) - 2, n=7$	PdCl ₂ (CH ₃ CN) ₂	Acetone	rt/lh	96	72
10	$R_1 = R_2 = C_2 H_5$, n=1	All ₃	CH ₃ CN	rt/10min	90	79
11	$R_1 = R_2 = C_2 H_5$, n=1	SiH ₂ I ₃	CDCl ₃	-42°C /1min	99	80
12	$R_1 = R_2 = -(CH_2) - n = 1$	SiH ₂ I ₃	CDCl ₃	-42°C /1min	56	80
13	$R_1 = R_2 = C_2 H_5, n=1$	SmCl ₃ / CH ₃ COCl	pentane	rt/15min	95.1	82
14	$R_1 = R_2 = CH_3 n = 1$	SmCl ₃ / CH ₃ COCl	pentane	rt/30min	95 .7	82
15	$R_1, R_2 = -(CH_2) - n = 1$	SmCl ₃ / CH ₃ COCl	pentane	rt/24h	6.4	82
16	$R_1, R_2 = -(CH_2) - n = 1$	CeCl ₃ •7H ₂ O	CH ₃ CN	rt/12h	85	86
17	$R_1, R_2 = -CH(n-Bu)-CH_2-, n=1$	CeCl ₃ •7H ₂ O	CH ₃ CN	Refluxt/3h	91	86
18	$R_1, R_2 = -(CH_2) - n = 1$	AgBrO ₃ /AlCl ₃	CH ₃ CN	Refluxt/2h	95	89
19	$R_1, R_2 = -(CH_2) - n = 1$	NaBrO ₃ /AlCl ₃	CH ₃ CN	Refluxt/5h	93	89
20	$R_1, R_2 = -(CH_2) - n = 1$	DMD	CH ₂ Cl ₂ /Acetone	0°C/24h	35	90
21	$R_1, R_2 = -(CH_2) - n = 1$	MTFMD	CH ₂ Cl ₂ /TFP	0°C/2h	98	90
22	$R_1, R_2 = -(CH_2) - n = 1$	PBGSiCl/CH3COCl		rt/4h	73	91
23	$R_1 = R_2 = CH_3, n=1$	Montmorillonite K10	CH ₂ Cl ₂	rt/5min	95	94
24	$R_1, R_2 = -(CH_2) - 1, n = 1$	Montmorillonite K10	CH ₂ Cl ₂	rt/2h	71	94
25	$R_1, R_2 = -(CH_2) - 3, n = 1$	Montmorillonite K10	CH ₂ Cl ₂	rt/2h	76	94
26	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$, $\mathbf{R} = t - \mathbf{B}\mathbf{u}$	PI,	CH,Cl,	rt/0.25h	78	69

Table 5. Deprotection of Acetals Derivatives to their Parent Carbonyl Compounds

Table 5. Continued...

Entry	Cmpd	Reagent		Temp./Time	Yield (%)	Yield Ref (%)	
R10_0	R2			·			
27	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_{3,}, \mathbf{R} = t - \mathbf{B}\mathbf{u}$	P ₂ I ₄	CH ₂ Cl ₂	rt/0.25h	81	69	
28	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_{3,}, \mathbf{R} = t - \mathbf{B}\mathbf{u}$	PI ₃	CH ₂ Cl ₂	60°C/6h	65	69	
29	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3, \mathbf{R} = t - \mathbf{B}\mathbf{u}$	P ₂ I ₄	CH ₂ Cl ₂	60°C/4h	58	6 8	
30	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_{3,}, \mathbf{R} = t - \mathbf{B}\mathbf{u}$	DDQ	CH ₃ CN/H ₂ O	rt/lh	92	81	
31	$R_1 = R_2 = CH_3, R = (=0)$	DDQ	CH ₃ CN/H ₂ O	rt/3h	95	81	
32	$R_1, R_2 = -(CH_2)-2, R = (=O)$	CuCl ₂ •2H ₂ O	CH ₃ CN	rt/30min	95	88	
33 R ₁ 0 OR	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{CH}_3, \mathbf{R}_3; \mathbf{R}_4 = (=\mathbf{CH}_2)$	Wet silica gel	CH ₂ Cl ₂	rt/0.5h	91	68	
34	$\mathbf{R} = \mathbf{R} = \mathbf{C}\mathbf{H} \cdot \mathbf{R} \cdot \mathbf{R} = \left(= \mathbf{A} \right)$	Wet silica gel	CH CI	rt/3h	60	68	
35	$R_1 = R_2 = C_1 H_2 R_3, R_3, R_4 = ()$ $R_1 = R_2 = C_2 H_2 R_3 = C H_3, n = 8$	P.I.	CH.Cl.	60°C/4h	85	69	
R10		2-4	2				
Me(H ₂ C) _n 36	$R_1 = R_2 = C_2 H_5, R = C H_3, n = 8$	PI ₃	CH ₂ Cl ₂	60°C/4h	79	69	
37	$R_1 = R_2 = CH_3, R = CH_3, n = 6$	TiCl₄/LiI	Et ₂ O	rt/3h	85	70	
38	$R_1 = R_2 = C_2 H_5, R = C H_3, n = 6$	TiCl₄/LiI	Et ₂ O	rt/6h	85	70	
39	$R_1, R_2 = -(CH_2)-2, R = CH_3, n = 8$	Me ₂ BBr	CH ₂ Cl ₂	-78℃/1h	97	71	
40	$R_1, R_2 = -(CH_2)-2, R = CH_3, n = 8$	Ph ₂ BBr	CH ₂ Cl ₂	-78°C/lh	90	71	
41	$R_1, R_2 = -(CH_2) - 2, R = CH_3, n = 6$	Clayan		MW/3min	90	96	
	R ₂						
42	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	TiCl₄	Et ₂ O	rt/10min	90	70	
43	$R_1 = R_2 = C_2 H_5$	All ₃	CH ₃ CN	rt/10min	80	79	
44	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{CH}_{2}) - \mathbf{R}_{2}$	All ₃	CH ₃ CN	rt/10min	82	79	
45	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	DDQ	CH ₃ CN/H ₂ O	rt/lh	75	81	
46	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}_2 \mathbf{H}_5$	SmCl ₃ /CH ₃ COCl	pentane	rt/15min	93.5	82	
47	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{CH}_{2}) - \mathbf{R}_{2}$	SmCl ₃ /CH ₃ COCl	pentane	rt/1h	88.7	82	
48	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}_2 \mathbf{H}_5$	WCl ₆	CH ₂ Cl ₂	rt/5min	93	87	
49	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	WCl ₆	CH ₂ Cl ₂	rt/5min	92	87	
50	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	CuCl ₂ •2H ₂ O	CH ₃ CN	rt/30min	85	88	
51	$R_1, R_2 = -(CH_2)-2$	CuCl ₂ •2H ₂ O	CH ₃ CN	rt/30min	95	88	
52	$R_1, R_2 = -(CH_2)-2$	AgBrO ₃ /AlCl ₃	CH ₃ CN	Reflux/0.75h	90	89	
53	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{C}\mathbf{H}_{2}) - \mathbf{K}_{2}$	NaBrO ₃ /AlCl ₃	CH ₃ CN	Reflux/1h	95	89	
54	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	DMD	CH ₂ Cl ₂ /Acetoe	18°C/96h	50	90	
55	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	PBGSiCl/CH ₃ COCl		rt/lh	90	91	
56	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	Montmorillonite K10	CH ₂ Cl ₂	rt/5min	95	94	
57	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	Clayan		MW/3.5min	86	96	

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
58	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{CH}_{2}) - 2$	BAABCD		MW/3min	83	97
	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	P ₂ I ₄	CH ₂ Cl ₂	rt/0.25h	67	69
60	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	PI ₃	CH ₂ Cl ₂	rt/0.25h	75	69
61	$R_1 = R_2 = CH_3$	All ₃	CH ₃ CN	rt/10min	86	79
62	$R_1, R_2 = -(CH_2)-2$	All ₃	CH ₃ CN	rt/30min	83	79
63	$R_1 = R_2 = CH_3$	DDQ	CH3CN/H2O	rt/1h	90	81
64	$R_1, R_2 = -(CH_2) - 2$	WCl ₆	CH ₃ CN	rt/10min	94	87
65	$R_1, R_2 = -(CH_2) - 2$	CuCl ₂ •2H ₂ O	CH ₃ CN	rt/30min	96	88
66	$R_1, R_2 = -(CH_2) - 2$	AgBrO ₃ /AlCl ₃	CH ₃ CN	Reflux/0.65h	90	89
67	$R_1, R_2 = -(CH_2) - 2$	NaBrO ₃ /AlCl ₃	CH ₃ CN	Reflux/0.75h	89	89
68	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	PBGSiCl/CH ₃ COCl		rt/6h	63	91
69	$R_1, R_2 = -(CH_2) - 2$	BnPh ₃ P ⁺ HSO ₅	CH,CN	Reflux/35min	90	92
70	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	Montmorillonite K10	CH ₂ Cl ₂	rt/5min	100	94
71	$R_1, R_2 = -CH_2 - C(CH_3)_2 - CH_2 -$	Montmorillonite K10	CH ₂ Cl ₂	rt/30min	95	94
72	$R_1, R_2 = -(CH_2)-2$	KmnO4/alumina		Grinding/5mn	98	95
73	$R_1, R_2 = -(CH_2) - 2$	KmnO4		Grinding/25in	68	95
74 R10	$R_1, R_2 = -(CH_2) - 2$	BAABCD		MW/3:20min	95	97
	A COLLAR A				100	
75Br ~	$R_1, R_2 = -(CH_2) - R = H$	SiH ₂ I ₂	CDCl ₃	-42°C/1min	100	80
76	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3, \mathbf{R} = \mathbf{H}$	SiH ₂ I ₂	CDCl ₃	-42°C/1min	100	80
77 R10	$ \begin{array}{c} \mathbf{R}_1, \mathbf{R}_2 = -(\mathbf{CH}_2) - 2\mathbf{R} = \mathbf{CH}_3 \\ \mathbf{P} \\ $	SiH ₂ I ₂	CDCl ₃	-42°C/10min	20	80
	R R	0.11.1	000	1000110	100	
78 800 -	$R_1, R_2 = -(CH_2) - 2, R = H$	SiH ₂ I ₂		-42°C/10min	100	80
79	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3, \mathbf{R} = \mathbf{H}$		CH ₃ CN/H ₂ O	n/in	91	81
80	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3, \mathbf{K} = \mathbf{H}$	SmCl ₃ /CH ₃ COCI	rentane	n/0.5n	98	62 07
81	$R_1, R_2 = -(CH_2) - 2, R = H$				89 07	07 07
	$R_1, R_2 = -(CH_2) - 2R_3 = H, R_4 = Ome$ R_2	Bhrn ₃ r ⁺ HSO ₅	CH ₃ CN	Rellux/oomin	8/	92
83 R4	$R_1, R_2 = -(CH_2)-2, R_3 = H, R_4 = NO_2$	BnPh ₃ P ⁺ HSO ₅	CH ₂ CN	Reflux/80min	78	92
84	$R_1, R_2 = -(CH_2)-2, R_3 = H, R_4 = Cl$	BnPh ₃ P ⁺ HSO ₅	CH ₃ CN	Reflux/75min	80	92
85	$R_1, R_2 = -(CH_2) - 2, R_3 = H, R_4 = OMe$	KmnO ₄ /alumina		Grinding/15min	92	95
86	$R_1, R_2 = -(CH_2) - 2, R_3 = H, R_4 = OMe$	KmnO ₄		Grinding/35min	70	95
87	$R_1, R_2 = -(CH_2) - R_3 = H, R_4 = NO_2$	KmnO ₄ /alumina		Grinding/15min	75	95
88	$R_1, R_2 = -(CH_2) - R_3 = H, R_4 = OMe$	KmnO ₄ /		Grinding/35min	55	95
89	$R_1, R_2 = -(CH_2) - 2, R_3 = H, R_4 = Cl$	KmnO ₄ /alumina		Grinding/15min	85	95

Table	5.	Continued

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
90	$R_1, R_2 = -(CH_2) - R_3 = H, R_4 = Cl$	KmnO₄/		Grinding/40min	55	95
91	$R_1, R_2 = -(CH_2) - 2, R_3 = H, R_4 = NO_2$	BAABCD		MW/3x2min	89	9 7
92 R10_0	$R_1, R_2 = -(CH_2) - R_3 = H, R_4 = OMe$	BAABCD		MW/3x20min	90	9 7
93 C	$R_1, R_2 = -(CH_2)-2$	CeCl ₃ •7H ₂ O	CH ₃ CN	Reflux/5h	91	86
94	$R_1, R_2 = -(CH_2)2$	CuCl ₂ •2H ₂ O	CH ₃ CN	rt/30min	98	88
95	$\mathbf{R}_{1} = \mathbf{R}_{2} = \mathbf{C}\mathbf{H}_{3}$	PBGSiCI/CH3COCI		rt/3h	88	91
9600	$R_1, R_2 = -(CH_2) - 2$	CuSO ₄ /Silica	CHCl ₃	60°C/3h	82	93
97	$R_1, R_2 = -(CH_2)2$	CuSO ₄ /Silica	CHCl ₃	60°C/4h	61	9 3
98	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{C}\mathbf{H}_3$	CuSO ₄ /Silica	CHCl ₃	60°C/2h60°C/	81	93
99	$\mathbf{R}_1 = \mathbf{C}(\mathbf{O})\mathbf{C}\mathbf{H}_3, \mathbf{R}_2 = \mathbf{H}$	CuSO ₄ /Silica	CHCl ₃	24h	85	9 3

Table 5. Continued...

The use of catalytic quantities of $PdCl_2(CH_3CN)_2$ in acetone represents an attractive and simple technique for removing ethylene acetals. The conditions are compatible with other functionalities, including a number of routinely employed alcohol protecting groups. Initially, the reactivity patterns of several ketals were examined in CH_3CN . Upon treatment with $PdCl_2(CH_3CN)_2$, yields are often excellent; however, these hydrolyses were not consistently reproducible. Modifications, such as freshly prepared catalyst, other sources of Pd (II) and standardized amounts of H_2O did little to improve the situation. Ultimately, simply switching to acetone as solvent, which favors transketalization, gave excellent results as summarized in *Table 5* (entries 7, 8 and 9).⁷²

Aluminum triiodide is a useful reagent for effecting a variety of synthetic transformations.⁷³⁻⁷⁸ It was observed that AII_3 has a greater affinity towards ethereal oxygen and forms a weak complex with it. Ketals, on treatment with this reagent in an aprotic solvent, would form a complex and release the parent carbonyl compound (*Scheme 9*). A freshly prepared pale yellow

solution of AlI₃ in dry benzene was added to a solution of the substrate in acetonitrile with continuous stirring at room temperature. Within a short time, the deprotected carbonyl compound was formed in good yield (*Table 5*, entries 10, 43, 44, 61 and 62).⁷

Diiodosilane (SiH_2I_2) is a mild reagent for cleavage of ketals hydrolytically to give the carbonyl compounds. At low temperature (-42°C) and short reaction time (a few minutes),

catalytic amounts (5-10 mol%) of diiodosilane provide clean deprotection of various ketals to yield ketones and aldehydes, with no apparent reduction of the latter (*Table 5*, entries 11, 12 and 75-78). At temperatures above 0°C, diiodosilane effectively converts ketals to the carbonyl compound and the iodoalkanes.

In the presence of a catalytic amount of 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ), acetals are readily hydrolyzed to the corresponding aldehydes or ketones in aqueous acetonitrile. Reactions using neutral DDQ have the advantage over the conventional methods using acidic catalysts, because of mildness of the reaction conditions (*Table 5*, entries 30, 31, 45, 63 and 79).⁸¹

The non-acidic deprotection of acetals is a desirable goal and the acetyl chloridesamarium trichloride system is simple and convenient. To a solution of the acetal in anhydrous *n*pentane, samarium trichloride was added under a nitrogen atmosphere at room temperature. Upon addition of freshly distilled acetyl chloride after the specified time, the carbonyl compound was isolated in good to excellent yields (*Table 5*, entries 13-15, 46, 47 and 80).⁸²

Many of these procedures suffer from one or more drawbacks: lack of selectivity, unsatisfactory yields, cost or toxicity of the reagent, or the necessity of anhydrous conditions. These limitations led to further investigations of new reagents able to perform the selective cleavage of acetals in good yields. Recently, several synthetically useful organic reactions using trivalent lanthanide salts have been reported⁸³⁻⁸⁵ and the use of CeCl₃ in methanol is a well-known method for this purpose. The deprotection of 1,3-dioxolanes was carried out in acetonitrile in the presence of CeCl₃ as reagent. To a stirred suspension of acetal and sodium iodide in acetonitrile was added CeCl₃•7H₂O, and the resulting mixture was stirred for the specified time at the reported temperature (*Table 5*, entries 16, 17 and 93). The mechanism for these transformations of 1,3-dioxolanes to carbonyl compounds is unclear. A reasonable explanation may be that the combination of a Lewis acid and the presence of water effects the deprotection (*Scheme 11*).⁸⁶

Tungsten hexachloride (WCl₆) in dichloromethane or acetonitrile at room temperature is a mild and efficient method for deprotection of a variety of ketals and rapidly converted them to their corresponding carbonyl compounds (*Table 5*, entries 48, 49, 64 and 81).⁸⁷ A variety of acetals were efficiently cleaved in short times and in high yields using CuCl₂•2H₂O in acetonitrile at room temperature. The results are summarized in *Table 5*, entries 32, 50, 51, 65 and 94. The deprotection reaction worked even with a catalytic amount of copper chloride, but the reaction time was longer. The pH 2-3 of the reaction mixture indicated that the reaction is probably acid-catalyzed. This method was effectively used in the synthesis of diols important in asymmetric syntheses.⁸⁸

Ethylene ketals are transformed to ketones with $AgBrO_3/AlCl_3$ in refluxing acetonitrile. AgBrO_3/AlCl_3 is also able to transform ethylene acetals to aldehydes in refluxing carbon tetrachloride in high yields (*Table 5*, entries 18, 52 and 66 for AgBrO_3/AlCl_3 and entries 19, 53 and 67 for NaBrO_3/AlCl_3). Both sodium bromate and silver bromate are effective under non-aqueous conditions when catalyzed with AlCl_3.⁸⁹

An alternative method is deprotection of ketals *via* oxidation. Compared to oxidation methods which use metal oxides stoichiometrically or metal complexes catalytically, oxidations employing either *in-situ* or isolated dioxiranes, **8a** or **8b** (a new class of powerful oxidants) often have the advantage of simple procedures, mild reaction conditions, ease of product isolation and increased yields. Thus dimethyldioxirane (DMD) **8a** and methyl(trifluoromethyl)dioxirane (MTFMD) **8b** have been applied to perform an impressive variety of useful synthetic transformations, such as oxidative cleavage of acetals and hemiacetals to carbonyl containing products. Addition of a solution of **8a** in acetone or **8b** in 1,1,1-trifluoropropane (TFP) to the acetals in dry CH_2Cl_2 kept at 0°C, affords the carbonyl compounds in 35-90% yields (*Table 5*, entries 20, 21 and 54).

The oxidation-cleavage is initiated by O-atom insertion into the C-H bonds of the 1,3dioxolane or into the methyne C-H of the dimethyl moiety of acetals, and followed by rearrangement shown in *Scheme 12.90*

Acetals have been treated at room temperature with stoichiometric amounts of acetyl chloride in the presence of catalytic amounts of a silica-supported guanidinum chloride (PBGSiCl) to produce the corresponding aldehydes and ketones in good yields under neutral conditions after moderate reaction times (*Table 5*, entries 22, 55, 68 and 95). The mechanism is viewed as the tight association of guanidinum cation (G⁺) with the oxygen lone pair of the acetals. Thus, the chloride anion induces dealkylation on the less-substituted carbon center in the α -position to the oxonium-like intermediate (*Scheme 13*).⁹¹ These results were attributed to the high nucleophilicity of the chloride anion associated with the guanidinum cation, related to the weakness of the ion pair derived from steric effect and charge stabilization by the guanidinum ion (*Scheme 13*). Consequently, the interaction of an ether linkage with guanidinum chloride

would induce the dealkylation of acetals, while acetyl chloride could act as a source of chloride anion. Therefore in a typical procedure, freshly distilled acetyl chloride was added dropwise to a suspension of PBGSiCl in the acetal in the absence of solvent. The reaction mixture was stirred until the end of methyl chloride evolution. The catalyst was recovered by dilution of the reaction mixture with chloroform and filtration, washed with chloroform, dried under vacuum and reused in another experiment.

Benzyltriphenylphosphonium peroxomonosulfate $(BnPh_3P^+HSO_5^-)$ was used as a new reagent for oxidative deprotection of ethylene acetals in refluxing acetonitrile in the presence of bismuth chloride (*Table 5*, entries 69 and 82-84). Although several Lewis acids such as $ZnCl_2$, FeCl₃, AlCl₃ and BiCl₃ were examined, surprisingly only BiCl₃ was found to be an effective catalyst during this investigation.⁹²

Most of the methods used for the cleavage of ketals employ aqueous reaction media acidified with mineral acids or non-aqueous media acidified with organic acids. There are few examples that make use of non-aqueous neutral reaction conditions. Even lower are the cases of cleavage methods performed with the reagent deposited on an inorganic support. Copper(II)

sulfate supported on silica gel in organic solvents promotes the cleavage of acetals to the corresponding carbonyl compounds under mild conditions (*Table 5*, entries 96-99).⁹³

The inexpensive, commercially available, acidic and activated clay, montmorillonite K10 in dichloromethane, provided a mild and efficient procedure for effecting the transformation of sensitive ketals into ketones in the total synthesis of anticancer agents, bromoxone and harveynone. As with many deprotection methods employing heterogeneous reagents, the reaction is operationally straightforward and the reagent is easily removed by filtration when the transformation of this deprotection procedure. *Table 5*, entries 23-25, 56, 70 and 71 gives data on representative results.⁹⁴

Potassium permanganate in the presence or absence of alumina was used to transform ethylene acetals to the corresponding carbonyl compounds under solvent-free conditions, a manipulatively simple and rapid method for oxidative deprotection of ethylene acetals. The yield of transformation of ethylene acetals to the corresponding carbonyl compounds with potassium permanganate without using alumina was lower and the rate was slower. The data for KMnO₄, in the presence and absence of alumina, are summarized in *Table 5*, entries 72, 85, 87 and 89 and entries 73, 86, 88 and 90 respectively.⁹⁵

Reagents impregnated on mineral solid supports are efficient in solvent free conditions under microwave irradiation and have attained importance because of their enhanced reactivity, selectivity and ease of manipulation. Clay supported ammonium nitrate "Clayan", converts acetals into the parent carbonyl compounds under microwave irradiation. The eco-friendly nature of the reagent and non-solvent conditions are the important features of the procedure. Clayan was prepared by the impregnation of ammonium nitrate on montmorillonite K10. Mixing clayan with acetals and then subjecting to MW irradiation gave the corresponding carbonyl compounds in good yield (*Table 5*, entries 41 and 57).⁹⁶

1-Benzyl-4-aza-1-azoniabicyclo[2.2.2]octane dichromate (BAABCD) is a useful reagent for the selective cleavage of ethylene ketals. This very simple and efficient method has been carried out under microwave irradiation. The reaction was complete within 3-4 minutes and the pure aldehydes and ketones obtained by a simple work-up (*Table 5*, entries 58, 74, 91 and 92).⁹⁷

IV. DEPROTECTION OF 1,1-DIACETATES

Acetals are the most common derivatives utilized for selective protection and deprotection of carbonyl compounds. However, in many cases different strategies are desirable where selective protection of aldehydes in the presence of keto groups are desired. In this context, protection as the 1,1-diacetate can be successfully utilized. A number of methods employed for the preparation of 1,1-diacetates from aldehydes include the use of strong protic acids such as sulfuric acid, phosphoric acid and methanesulfonic acid ⁹⁸ or Lewis acids such as zinc chloride, ferric chloride ⁹⁹ and phosphorus trichloride.¹⁰⁰ Although these methodologies can afford 1,1-diacetates in good yields, the forcing reaction conditions limit more widespread applications. To this end, different heterogeneous and environmentally friendly catalysts have been utilized. These include Nafion-H,¹⁰¹ tungestosilic acid,¹⁰² B-Y and HZSM-5 zeolite,^{103,104} sulfated zirconia¹⁰⁵ and expensive graphite.¹⁰⁶ Since 1,1-diacetates are stable to oxidants,^{107,108} easily prepared and can serve as starting materials for Diels-Alder cycloaddition reactions,^{109,110} they have received increased attention over the last decade.

Complete conversion of 1,1-diacetates to the corresponding aldehydes is accomplished with either sodium hydroxide or potassium carbonate in aqueous THF overnight. Consequently, cleavage of this protecting group is possible under very mild conditions. This method in which no detailed procedures are given has, however, the substantial drawback of requiring long reaction times.¹¹¹

The boron triiodide (BI₃)-*N*,*N*-diethylaniline complex, generated *in situ* from boron, *N*,*N*-diethylaniline and I₂, regenerated carboxaldehydes from the corresponding geminal diacetate derivatives under mild condition in good yields. The reaction was carried out by adding a solution of the diacetate in benzene to the BI₃ complex in benzene under argon atmosphere and at room temperature, stirring for the specified time give the aldehyde in good yields (*Table 6*, entries 1-3 and 29).¹¹² Ceric ammonium nitrate (CAN) coated on silica gel in dichloromethane selectively converts benzaldehydediacetates to the corresponding benzaldehydes. For this deprotection reactions, CAN has proved to be an ideal reagent because of the mild conditions involved (*Table 6*, entries 4-8).¹¹³ Expensive graphite has been previously used as an efficient and convenient catalyst for preparation of 1,1-diacetates from aldehydes.¹⁰⁶ In addition this reagent could deprotect same diacetates to their parent aldehyde in refluxing dichloromethane or benzene with excellent yields (*Table 6*, entries 9-13).¹¹⁴

A number of 1,1-diacetates are easily cleaved in good to excellent yields under catalysis by montmorillonite clays in refluxing dichloromethane and/or under microwave irradiation.^{115, 116} However, the reagent was used for only one compound and no general study is available. In this work, montmorillonite K10 or KSF for the time indicated in *Table 6* regenerated carbonyl derivatives without the use of an additional microwave oven (*Table 6*, entries 14, 16, 18, 20 and 22 for Montmorillonite K10 (MMK10) and entries 15, 17, 19, 21 and 23 for Montmorillonite KSF (MMKSF). The mechanism of this reaction was different from the mechanism of hydrolysis of diacetates in aqueous hydrochloric acid. The hydroxamate test identifies the presence of acetic anhydride in the reaction products. Furthermore, neither additional nor anhydrous conditions affect the reaction rate. These results show that the reaction undergoes a unimolecular decomposition of 1,1-diacetates to give an aldehyde and acetic anhydride and in this method the supposedclay functions as a Lewis acid (*Scheme 14*).¹¹⁷

Scheme 14

Entry Cmpd	R ₁	R ₂	R ₃	R ₄	Reagent	Solvent	Temp./ Time	Yield (%)	Ref
R1 OAc	••							_	
	ĥ	н	н	Н	BI ₃ /N,N-diethylaniline	C ₆ H ₆	rt/3h	65	112
2 **	Н	CH ₃	Н	Н	BI ₃ /N,N-diethylaniline	C ₆ H ₆	rt/3h	66	112
3	н	Br	Н	H	BL ₃ /N,N-diethylaniline	C_6H_6	rt/3h	65	112
4	OCH ₃	н	OCH ₃	H	CAN/SiO2	CH_2Cl_2	rt/15min	92	113
5	Н	OCOMe	н	Н	CAN/SiO ₂	CH_2Cl_2	rt/15min	98	113
6	Н	OCOMe	OCH ₃	H	CAN/SiO ₂	CH ₂ Cl ₂	rt/15min	9 0	113
7	OCH ₃	NO ₂	OCH ₃	Н	CAN/SiO ₂	CH ₂ Cl ₂	rt/15min	9 4	113
8	OCH ₃	н	OCH ₃	NO ₂	CAN/SiO2	CH ₂ Cl ₂	rt/15min	95	113
9	Н	н	Н	Н	Expansive Graphite	CH ₂ Cl ₂	Reflux/15mi	98	114
10	Н	CH ₃	Н	Н	Expansive Graphite	CH_2Cl_2	Reflux/10mi	99	114
11	Н	OCH ₃	Н	Н	Expansive Graphite	CH ₂ Cl ₂	Reflux/10min	99	114
12	Н	OCH ₃	Cl	Н	Expansive Graphite	CH ₂ Cl ₂	Reflux/30min	95	114
13	Н	OCH ₃	NO ₂	Н	Expansive Graphite	CH ₂ Cl ₂	Reflux/30min	96	114
14	н	н	Н	Н	MMK10	CH ₂ Cl ₂	Reflux/20min	98	117
15	Н	н	н	H	MMKSF	CH ₂ Cl ₂	Reflux/20min	96	117
16	Н	CH ₃	Н	Н	MMK10	CH ₂ Cl ₂	Reflux/20min	99	117
17	Н	CH ₃	н	Н	MMKSF	CH ₂ Cl ₂	Reflux/15min	98	117
18	Н	ОСН3	Н	H	MMK10	CH ₂ Cl ₂	Reflux/20min	98	117
19	Н	OCH ₃	н	H	MMKSF	CH ₂ Cl ₂	Reflux/20min	96	117
20	Н	н	Cl	H	MMK10	CH ₂ Cl ₂	Reflux/30min	95	117
21	Н	н	Cl	Н	MMKSF	CH ₂ Cl ₂	Reflux/40min	93	117
22	Н	н	NO ₂	Н	MMK10	CH_2Cl_2	Reflux/20min	98	117
23	Н	н	NO ₂	Н	MMKSF	CH ₂ Cl ₂	Reflux/25min	95	117
24	Н	Ph	Н	Н	Zeolite HSZ-360		MW/20min	99	119
25	Н	NO ₂	Н	Н	Zeolite HSZ-360		MW/20min	93	119
26	Н	OCH ₃	Н	Н	Zeolite HSZ-360		MW/20min	94	119
27	Н	CH3	н	н	Zeolite HSZ-360		MW/20min	86	119
28	Н	H	Н	H	Zeolite HSZ-360		MW/20min	94	119
ме(Сн_{2)n}Сн(0 29	N = 4				BI ₃ /N,N-diethylaniline	C ₆ H ₆	rt/2.5h	60	119
30	N = 10)			Zeolite HSZ-360		MW/20min	88	119

Table 6. Deprotection of 1,1-Diacetates

Zeolite HSZ-360 can generate 1,1-diacetate from aldehyde in the presence of acetic anhydride in good to high yields (85-98%). Next the ability of this catalyst for the production of aldehydes from 1,1-diacetate was investigated. Microwave irradiation of 1,1-diacetate/zeolite

HSZ-360mixture for 20 minutes provide clean regeneration of the corresponding aldehydes in high yields (88-99%) (*Table 6*, entries 24-28 and 30).¹¹⁸

Hydrolytic enzymes, especially esterases and lipases, are among the most broadly used classes of enzymes in organic synthesis. Their great catalytic abilities, broad substrate specificity, stability and low cost make them attractive for chemical transformation. A new and convenient method for the optical resolution of aldehydes, which bear an asymmetric carbon adjacent to the carbonyl carbon, has been developed through lipase-catalyzed resolution of the corresponding acylals. Thus substrates were chosen to test the enzymatic hydrolysis with the following commercially available hydrolytic enzymes: *Pig Liver Esterase* (PLE), *Pig Pancreatic Lipase* (PPL), P-*Fluorescens* Lipase (PFL) and *Candida Rugosa Lipase* (CRL). The results are summarized in *Table 7. Candida Rugosa* Lipase (CRL) showed the best stereoselectivity.¹¹⁹

Entry	Substrate	R=	Enzyme	Time (min)	Conversion	Ee	Ref
1		Ме	PLE	30	30	2	118
2		Me	PPL.	40	18	14	118
3		Me	CRL	70	25	72	118
4		Me	PFL	360	5	-	118
5		Et	CRL	90	23	40	118
6		Pr	CRL	90	20	35	118

Table 7. Asymmetric Enzymatic Hydrolysis of 1,1-Diacylates of 2-Phenylpropanal^a

a) All configurations are R except for entry 4.

V. DEPROTECTION OF 1,3-DITHIOLANES AND 1,3-DITHIANES

Cyclic thioacetals and ketals have been widely used as carbonyl protecting groups and indeed, considerable effort has been made for the development of new methods for their introduction and removal.¹ Their primary use, however, involves the protection of the carbonyl function, exemplified by numerous useful applications in organic synthesis and the total synthesis of natural products.¹²⁰⁻¹²³ 1,3-Dithiolanes are usually obtained by acid-catalyzed condensation of carbonyl compounds with 1,2-ethanedithiol. Lewis acid catalysts used for this purpose include boron trifluoride etherate,¹²⁴ zinc(II) chloride,¹²⁵ aluminum(III) chloride,¹²⁶ titanium(IV) chloride,¹²⁷ lanthanum(III) chloride,¹²⁸ tellurium chloride,¹²⁹ tetrachlorosilane¹³⁰ and organotin triflates.¹³¹ 1,3-Dithianes are usually obtained by acid-catalyzed condensation of carbonyl compounds with 1,3-dithiols. Lewis acid catalysts used for this purpose include boron trifluoride etherate,¹³²⁻¹³⁴ SOCl₂-SiO₂,¹³⁵ tellurium chloride,¹²⁹ Montmorillonite KSF clay without solvent¹³⁶ samarium iodide.¹³⁷ Of the many dithioacetalization methodologies, chemical procedures are more widely used than others, based on photolytic and electrolytic processes. A mixture of aqueous hydrochloric acid and dimethyl sulfoxide is presumably in equilibrium with small amounts of the chlorodimethylsulfonium ion, a positive halogen donor which has been used as mild chlorinating agent.¹³⁸ Chlorination of dithianes in aqueous media has been used to regenerate the carbonyl function.^{139, 140} On the basis of this fact, the cleavage may be performed by using a positive sulfur donor such as methylbis[methylthio]sulfonium hexachloroantimonate 9.¹⁴¹ The reaction was carried out in dichloromethane and at $-77^{\circ}C$ (*Table 8*, entries 1 and 46).¹⁴²

Conversion of thioacetals to the corresponding carbonyl compounds can be performed under a variety of reaction conditions, one of them being the oxidative method. When diethyl and diphenyl dithioacetals were treated with a mixture of *m*-chloroperbenzoic acid and trifluoroacetic acid in dichloromethane, the corresponding carbonyl compounds were regenerated in high yield (*Table 8*, entries 78-80, 87 and 88).¹⁴³ The application of some oxidative methods to polyfunctional molecules is limited due to the drastic conditions required, and to the difficulty to obtain reproducible yields. Thus, chemical methods often require the use of heavy metal reagents, antimony pentachloride (SbCl₅) being one of them.

Activation of organic molecules through single electron transfer (SET) affords ionradical intermediates that participate in many oxidation and reduction processes. Antimony pentachloride has been successfully used for the generation of organic cation radicals.¹⁴⁴ Since the dithioacetalization is recognized as an important reaction in synthetic organic chemistry, the SET reactions of dithioacetals with antimony pentachloride became of interest. The reaction of several 1,3-dithianes with SbCl₅ in methylene chloride under nitrogen at 0°C, produced carbonyl compounds in good yields (*Table 8*, entries 2, 9, 17 and 32-34). ¹⁴⁵ The proposed reaction pathway is depicted on *Scheme 15*.

The reaction of 2-lithio-1,3-dithiane with triisopropylsilyl chloride (TIPSCl) led to 10 cleanly. The solvolysis of 10 in a mixture of $HgCl_2$, HgO, MeOH afforded 12 in 89% yield. The hydrolysis of 12 in refluxing aqueous acetonitrile and in the presence of $LiBF_4$ provided 11 in 91% yield. In contrast, even the mild Vedejs-Fuchs hydrolysis conditions¹⁴⁶ gave 11 in significantly lower yield and purity (*Scheme 16*).¹⁴⁷

Reaction of 1,3-dithiolanes with SeO₂ in acetic acid at room temperature regenerates the corresponding carbonyl compounds in good yields (*Table 8*, entries 47, 57, 72 and 81).¹⁴⁸ The full account of the reagent (silver salt-I₂) system for deprotection of dithioacetals and its application for the synthesis of α -hydroxyaldehyde has been described.¹⁴⁹ Among silver perchlorate, silver acetate, silver carbonate and silver nitrite, the latter was the most effective for deprotection of 1,3-dithianes and 1,3-dithiolanes (*Table 8*, entries 10, 20, 21 and 48).

Table 8. Deprotection of 1,3-Dithianes and 1,3-Dithiolanes

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
Rs R1	S×sR ₂					
1 0-N	$R_1, R_2 = -(CH_2) - 3, R = CH_3, R_3 = H$	(CH ₃) ₃ S ₃ +SbCl ₅ -	CH ₂ Cl ₂	-77°C/1min	100	142
2	$R_1, R_2 = -(CH_2) - 3, R, R_3 = H$	SbCl ₅	CH ₂ Cl ₂	0°C/10min	66	145
3	$R_1, R_2 = -(CH_2)_2 - R = H, R_3 = NO_2$	Nitrogen oxides	CH ₂ Cl ₂	0-5°C/	87	153
4	$R_1, R_2 = -(CH_2) - 3, R, R_3 = H$	Fe(NO ₃) ₃	hexane	50°C/10min	100	155
5	$R_1, R_2 = -(CH_2) - R_2, R_3 = H$	Fe(NO ₃) ₃	hexane	50°C/10min	100	155
6	$R_1, R_2 = -(CH_2) - 3, R, R_3 = H$	Fe(NO ₃) ₃ /silica	hexane	40-50°C/10min	100	159
7	$R_1, R_2 = -(CH_2) - R_2, R_3 = H$	clayfen		MW/40sec	97	164
8	$R_1, R_2 = -(CH_2) - 3, R, R_3 = H$	clayfen	***	rt	9 7	164
9	$R_1, R_2 = -(CH_2) - 3$	SbCl ₅	CH ₂ Cl ₂	0°C/10min	76	145
\sim	H S SR2					
10 OMe	$R_1, R_2 = -(CH_2) - 3$	AgClO ₄ /I ₂	THF	rt/5min	95	149
11	$R_1, R_2 = -(CH_2) - 2$	Amberlyst 15	Acetone/H2O/CHO	80°C/96h	60	154
12	$R_1, R_2 = -(CH_2) - 2$	Fe(NO ₃) ₃	hexane	50°C/5min	89	155
13	$R_1, R_2 = -(CH_2) - 3$	Fe(NO ₃) ₃	hexane	50°C/5min	93	155
14	$R_1, R_2 = -(CH_2)3$	Fe(NO3)3/silica	hexane	40-50°C/10min	100	159
15	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{E}\mathbf{t}$	Clayan	CH ₂ Cl ₂	40-50°C/18h	83	160
16	$R_1, R_2 = -(CH_2)-2$	Clayfen		rt	97	164
R ₁ S	SKR₂ ₽					
17 _{ci}	$R_1, R_2 = -(CH_2) - 3, R = CH_3$	SPC12.	CH ₂ Cl ₂	0°C/10min	81	145
18	$R_1, R_2 = -(CH_2)-2, R = H$	Fe(NO ₃) ₃	hexane	50°C/10min	93	159

Table 3	8. Coi	ntinued
T able	6 . COI	iunuea

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
19 R1	$R_1, R_2 = -(CH_2) - 3, R = H$	Fe(NO ₃) ₃	hexane	50°C/10min	95	155
Me(H ₂ C)	$R_{\rm H}$ R = -(CH_{\rm H})R=H	AgNO./I.	тнғ	rt/2.5h	73	149
21	$R_1, R_2 = -(CH_2) \cdot R_2 = H$	AgNO./I.	THF	rt/5.5h	88	149
22	$R_{11}, R_{22} = -(CH_{2}) - R_{21} = H_{22}$	H.IO.	Ether/THF	rt/5min	91	150
23	$R_{11}R_{2} = -(CH_{2}) - R_{11}R_{2} = CH_{2}$	H.IO,	Ether/THF	rt/5min	94	150
24	$R_1, R_2 = Et, R = CH_2$	Isoamyl nitrite	CH_Cl_	rt/0.5h	89	151
25	$R_{11}, R_{2} = -(CH_{2}) - R_{12} = H_{12}$	Nitrogen oxides	CH,Cl,	0-5°C/	96	153
26	$R_1 = R_2 = Et, R = H$	Clayfen	CH,Cl,	rt/3h	87	157
27	$R_1 = R_2 = Et, R = H$	Claycop	CH,Cl,	rt/3h	88	157
28	$R_1, R_2 = -(CH_2) - R_3, R = H$	Clayfen	CH,Cl,	rt/4h	99	157
29	$R_1, R_2 = -(CH_2) - R_3, R = H$	Claycop	CH ₂ Cl ₂	rt/4h	91	157
30	$R_1, R_2 = -(CH_2) - 3, R = CH_3$	Clayfen	CH ₂ Cl ₂	rt/4h	99	157
31	$R_1, R_2 = -(CH_2) - 3, R = CH_3$	Claycop	CH ₂ Cl ₂	rt/4h	98	157
C	R ₁ S SR ₂ R					
32 _{Mo}	$R_1, R_2 = -(CH_2)3, R = Ph$	SbCi ₅	CH ₂ Cl ₂	0°C/10min	81	145
33	$R_1, R_2 = -(CH_2)3, R = H$	SbCl ₅	CH ₂ Cl	0°C/10min	63	1559
34	$R_1, R_2 = -(CH_2) - 3, R = CO_2 Me$	SPCI2	CH ₂ Cl ₂	0°C/10min	63	145
35	$R_1, R_2 = -(CH_2) - 2, R = H$	Fe(NO ₃) ₃	hexane	50°C/10min	100	155
36	$R_1, R_2 = -(CH_2) - 3, R = H$	Fe(NO ₃) ₃	hexane	50°C/10min	100	155
37	$R_1, R_2 = -(CH_2) - 3, R = p - MeC_6H_4$	TCPPCIO4	CH ₂ Cl ₂	hn/120min	95	161
38	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{CH}_{2}){3}, \mathbf{R} = \mathbf{CH}_{3}$	TCPPCIO4	CH ₂ Cl ₂	hn/100min	72	161
39	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(C\mathbf{H}_{2}){3}, \mathbf{R} = CO_{2}Me$	TCPPCIO4	CH ₂ Cl ₂	hn/240min	59	161
40	$R_1, R_2 = -(CH_2) - 3, R = H$	TCPPCIO4	CH ₂ Cl ₂	hn/90min	68	161
41	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(C\mathbf{H}_{2}) - 2, \mathbf{R} = p - MeC_{6}\mathbf{H}_{4}$	TCPPCIO4	CH ₂ Cl ₂	hn/30min	90	161
42	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{CH}_{2}) - 2, \mathbf{R} = \mathbf{CH}_{34}$	TCPPCIO4	CH ₂ Cl ₂	hn/60min	50	161
43	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{C}\mathbf{H}_{2}) - 2, \mathbf{R} = \mathbf{C}\mathbf{H}_{34}$	TCPPCIO4	CH ₂ Cl ₂	hn/18min	39	161
44	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{C}\mathbf{H}_{2}) - 2, \mathbf{R} = \mathbf{H}$	TCPPCIO4	CH ₂ Cl ₂	hn/18min	96	161
45	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{P}\mathbf{h}, \mathbf{R} = \mathbf{H}$	TCPPCIO4	CH ₂ Cl ₂	hn/12min	83	161
46	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(CH_{2}){3}$	(CH ₃) ₃ S ₃ +SbCl ₆ -	CH ₂ Cl ₂	-77°C/5min	97	142
R ₁ S						
47	$R_1, R_2 = -(CH_2)-2$	SeO ₂	AcOH	rt/50min	96	148
48	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{CH}_{2}){3}$	AgNO ₂ /I ₂	THF	rt/20min	89	149
49	$R_1, R_2 = -(CH_2) - 2$	Amberlyst 15	Acetone/H ₂ O/CHO	80°C/15h	80	154
50	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{C}\mathbf{H}_{2}) - \mathbf{E}_{2}$	$Fe(NO_3)_3$	hexane	50°C/10min	95	155
51	$R_1, R_2 = -(CH_2)3$	Fe(NO ₃) ₃	hexane	50°C/10min	96	155

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
52	$R_1, R_2 = -(CH_2)3$	Clayfen	CH ₂ Cl ₂	rt/5h	100	157
53	$R_1, R_2 = -(CH_2)3$	Claycop	CH ₂ Cl ₂	rt/5h	100	157
54	$R_1, R_2 = -(CH_2)3$	Fe(NO3)3/silica	hexane	40-50°C/15min	99	159
55	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{E}t$	Clayan	CH ₂ Cl ₂	40-50°C/20h	86	160
56	$R_1, R_2 = -(CH_2)-2$	Clayfen		RT	95	164
R ₁ S_SF	32					
57 ^{Ph} Pt	$R_1, R_2 = -(CH_2)-2$	SeO ₂	AcOH	rt	91	148
58	$R_1, R_2 = -(CH_2)3$	H ₅ IO ₆	Eherr/THF	rt/120min	99	150
59	$R_1, R_2 = -(CH_2)3$	Isoamyl nitrite	CH ₂ Cl ₂	reflux/2.5h	5	151
60	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{E}\mathbf{t}$	Isoamyl nitrite	CH ₂ Cl ₂	rtC/0.5h	84	151
61	$\mathbf{R}_{1}, \mathbf{R}_{2} = -(\mathbf{CH}_{2}){3}$	Nitrogen oxides	CH ₂ Cl ₂	0-5°C/	97	153
62	$R_1, R_2 = -(CH_2)-2$	Fe(NO ₃) ₃	hexane	50°C/10min	94	155
63	$R_1, R_2 = -(CH_2)3$	Fe(NO ₃) ₃	hexane	50°C/10min	98	155
64	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{E}\mathbf{t}$	Clayfen	CH ₂ Cl ₂	rt/2.5h	99	157
65	$R_1, R_2 = -(CH_2)-2$	Clayfen	CH ₂ Cl ₂	rt/3h	100	157
66	$R_1, R_2 = -(CH_2)-3$	Clayfen	CH ₂ Cl ₂	rt/2.5h	98	157
67	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{E}\mathbf{t}$	Claycop	CH ₂ Cl ₂	rt/4h	9 9	157
68	$R_1, R_2 = -(CH_2)-2$	Claycop	CH ₂ Cl ₂	rt/6h	100	157
69	$R_1, R_2 = -(CH_2)3$	Claycop	CH ₂ Cl ₂	rt/5h	97	157
70	$R_1, R_2 = -(CH_2)3$	Fe(NO3)3/silica	Hexane	40-50°C/10min	99	155
71	$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{E}\mathbf{t}$	Clayfen		RT	92	164
R ₁ S	.SR₂ `CH•					
72	$R_1, R_2 = -(CH_2)-2$	SeO ₂	AcOH	rt/25min	98	148
73	$R_1, R_2 = -(CH_2)3$	Nitrogen oxides	CH ₂ Cl ₂	0-5°C/	40	153
74	$R_1, R_2 = -(CH_2)-2$	Fe(NO ₃) ₃	hexane	50°C/30min	82	155
75	$R_1, R_2 = -(CH_2) - 3$	Fe(NO ₃) ₃	hexane	50°C/30min	84	155
76	$R_1, R_2 = -(CH_2)_3$	Fe(NO3)3/silica	hexane	40-50°C/30min	97	159
77 ^{R₁S} × ^{SR₂}	$R_1, R_2 = -(CH_2)2$	Clayfen		RT	86	164
78	$R_1, R_2 = -(CH_2) - 3, n = 7$	mCPBA	CH ₂ Cl ₂	0°C/1h	0	143
79	$R_1, R_2 = Et, n = 7$	mCPBA	CH ₂ Cl ₂	0°C/1h	95	143
80	$R_1, R_2 = Ph, n = 7$	mCPBA	CH ₂ Cl ₂	0°C/1h	98	143
81	$R_1, R_2 = -(CH_2)2, n = 1$	SeO ₂	AcOH	rt/120min	92	148
82	$R_1, R_2 = -(CH_2) - 2, n = 3$	Amberlyst 15	Acetone/H2O/CHO	80°C/10h	92	148
83	$R_1, R_2 = -(CH_2) - 3, n = 7$	Amberlyst 15	Acetone/H,O/CHO	80°C/48h	73	154
84	$R_1, R_2 = -(CH_2) - 3, n = 1$	Fe(NO3)3/silica	- Hexane	40-50°C/3min	98	154

Table 8. Continued...

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
85	$R_1, R_2 = -(CH_2) - 3, n = 7$	Fe(NO3)3/silica	Hexane	40-50°C/10min	88	159
86	$\mathbf{R}_1, \mathbf{R}_2 = \mathbf{E}\mathbf{i}, \mathbf{n} = 1$	Clayan	CH ₂ Cl ₂	rt/16h	????	160
87 R-	\mathbf{SR}_{1} \mathbf{SR}_{2} \mathbf{R}_{1} , $\mathbf{R}_{2} = \mathbf{E}\mathbf{t}$, $\mathbf{R} = t\mathbf{B}\mathbf{u}$	mCPBA	CH ₂ Cl ₂	0°C/1h	96	143
88	$\mathbf{R}_1, \mathbf{R}_2 = \mathbf{Pht}, \mathbf{R} = t\mathbf{Bu}$	mCPBA	CH ₂ Cl ₂	0°C/1h	95	143
89	$R_1, R_2 = -(CH_2) - 3, R = -O(CH_2) - 0$	H ₅ IO ₆	Ether/THF	rt/20min	86	150
90	$R_1, R_2 = -(CH_2) - 3, R = Ph$	TCPPCIO4	CH ₂ Cl ₂	hn/420min	63	161

Table 8. Continued...

Periodic acid 13 under non-aqueous conditions has been used for the deprotection of the dithio derivatives to the corresponding carbonyl compounds. This simple high-yield transformation is conveniently carried out in non-aqueous medium and works well with complex sensitive aldehydes and in the presence of other protective groups $(Table \ 8, entries \ 22, \ 23, \ 58 \ and \ 89).^{150}$

However, chemical methods often require the use of reagents of elements such as Hg^{2+} , Ag^+ , Se^{4+} , Tl^{3+} , Cd^{2+} , which are inherently toxic and/or expensive to use. In view of economical, practical and recent environmental demands, there is a significant advantage in using non-toxic and inexpensive metal salts. The use of nitrosonium and nitronium ion sources for regenerating carbonyl compounds from protected derivatives under various conditions has had some early successes. For example, an interesting method for dethioacetalization with isoamyl nitrite has been proposed.¹⁵¹ The corresponding carbonyl compounds were obtained by stirring a mixture of thioacetal and isoamyl nitrite in dichloromethane at room temperature for a specified time (*Table 8*, entries 24, 59 and 60). The proposed mechanism is shown in *Scheme 17*.

Thioacetals derived from aldehydes and ketones can be unmasked to the corresponding carbonyl compounds in high yield on exposure to a solution of oxides of nitrogen in dichloromethane. Nitrogen oxides were prepared according to literature procedure ¹⁵² by treating

arsenious oxide with concentrated HNO₃ and the resulting gaseous mixture was bubbled through dichloromethane cooled in an ice-bath (0-5°C). The green solution obtained could be stored at 0-5°C for several months without loss of activity. The oxides of nitrogen are usually regarded as a mixture of N₂O₄, N₂O₃ and NO₂. The deprotection of thioacetals was carried out in stirring dichloromethane, at 0-5°C and was completed between 5-20 min (*Table 8*, entries 3, 25, 61 and 73).¹⁵³

In continuation of the investigation on new cleaner chemical processes, carbonyl compounds were regenerated from corresponding 1,3-dithiolanes *via* equilibrium exchange with aqueous acetone, paraformaldehyde and Amberlyst 15, as an acidic catalyst, at 80°C (*Table 8*, entries 11, 49, 82 and 83).¹⁵⁴ As mentioned in the deoximation section, Amberlyst 15 is an excellent and far superior catalyst for regeneration of carbonyl compounds from nitrogenous derivatives when wet acetone is used as the exchange reagent. This has led to the development of a new method for the deprotection of dithioacetals. This procedure, which is a modification of the standard method for the hydrolyses of thioacetals, is carried out at 80°C by dissolving the appropriate dithioacetals in acetone/water/paraformaldehyde in the presence of catalytic amounts of Amberlyst 15 and stirring the reaction mixture at 80°C for 15-20 h. After a straightforward work-up, the corresponding pure carbonyl compounds are obtained in satisfactory to good yields.¹⁵⁴

In order to simplify the method, to increase reagent utility and to avoid non-selective hydrolysis, a method based on dry conditions has been developed to convert S,S-acetals efficiently into the parent carbonyl compounds by simply adding an inorganic support material to a reaction mixture in an aprotic solvent. The efficiency of a heterogeneous system based upon iron(III) nitrate oxidation has been established in some investigations. In view of economical, practical and recent environmental demands, significant advantage was observed in using the non-toxic and inexpensive iron(III) nitrate as metal salt and Montmorillonite K10 as an inorganic support material.¹⁵⁵ For dethioacetalization of 1,3-dithiolanes, see *Table 8*, entries 5, 12, 18, 35, 50, 62 and 74 and for dethioacetalization of 1,3-dithianes see *Table 8*, entries 4, 13, 18, 36, 51, 63 and 75.

As mild and convenient sources of nitrosonium cations which are innocuous towards the carbonyl group (even of benzaldehyde), both clay-supported ferric nitrate ("Clayfen") and clay-supported cupric nitrate ("Claycop"), are reagents of choice for this hydrolysis. No external source of water is needed since it is provided by the internal structure of the clay. "Clayfen" and "Claycop" were prepared by mixing the K10 bentonite clay with iron (III) nitrate nonahydrate and copper (II) nitrate trihydrate respectively in acetone.¹⁵⁶ Stirring the thioacetals with clayfen or claycop in dichloromethane for a few hours, at room temperature, results in rapid evolution of nitrogen oxides. Stirring was maintained until full disappearance of the oxides (*Table 8*, entries 26-31, 52, 53 and 64-69).^{157, 158}

1,3-Dithianes derived from aromatic, aliphatic and cyclic ketones or aldehydes can be conveniently converted to the parent carbonyl compounds with a combination of ferric nitrate and silica gel in hexane in excellent to quantitative yields. Simple efficient stirring of a mixture of ferric nitrate, silica gel, 1,3-dithianes in hexane as the solvent at 40-50°C for 3-30 minutes can readily carry out this deprotection reaction. The resulting carbonyl compounds are obtained by a simple work-up procedure (*Table 8*, entries 6, 14, 54, 70, 76, 84 and 85).¹⁵⁹

Clay supported ammonium nitrate ("clayan") is another clay supported reagent for dethioacetalization of thioacetals and dithianes. To a solution of thioacetal derivatives of carbonyl compounds in dry dichloromethane, clay supported ammonium nitrate ("clayan") was added and the mixture was stirred at room temperature under nitrogen atmosphere for the stipulated period (*Table 8*, entries 15, 55 and 86).¹⁶⁰

Based on the results from the electrochemical studies and the photo-induced electrontransfer (PET) reactions of organosulfur compounds, it was expected that PET process could be useful for the deprotection of dithioacetals and ketals. This prediction proved to be correct by the

studies reported on the photoreactions of various dithioacetals and ketals using *tris*(*p*-chlorophenyl)pyryliumperchlorate (TCPPClO₄) **14** as a sensitizer. Irradiation of dichloromethane solutions containing dithioacetals or ketals and pyrylium salt **14** at $\lambda > 360$ nm afforded the corresponding carbonyl compound in good to excellent yields in the presence of molecular oxygen (*Table 8*, entries 37-45 and 90).¹⁶¹

On the basis of the results obtained in this study, the reaction mechanism in Scheme 18 was proposed. Single electron-transfers from the substrate to the excited state of $TCPPCIO_4$ gives the cation radical intermediate 16. The formed cation radical 16 undergoes carbon-sulfur bond cleavage in dual fashion depending on the structure of 16. Usually, bond cleavage of 16 gaves a sulfonium and a carbon radical moieties as shown in 17. The radical portion of 17 is captured by molecular oxygen to give the peroxy radical 18 which rearranges to the carbonyl compound 15 through another electron transfer step. In the case of diphenyldithioacetal, it is also probable that the cation radical 16 can release phenylthio radical (PhS•) to form the carbocation 19. The formed cation 19 is attacked by water and finally converted to the carbonyl compound 15 (Scheme 18).

The use of inexpensive supported reagents appears to be an attractive option because of selectivity and the ease of manipulation. In this context, clay supported reagents have found widespread utility in a variety of heterogeneous reactions. Recently, reactions under solvent-free conditions have received increasing attention.^{162, 163} A facile conversion of thioacetal carbonyl compounds using ("Clayfen") in the solid state under microwave irradiation was reported (*Table* 8, entries 7, 8, 16, 56, 71 and 77). The reaction presumably proceeds *via* the nitrosonium ions and no-side products were formed during the deprotection reaction. This method is environmentally benign, with cleavage of the thioacetal to the carbonyl compounds in a short reaction time and in high yield without using toxic organic solvents.¹⁶⁴

VI. DEPROTECTION OF 1,3-OXATHIOLANES

Among the various functional groups, the protection of the carbonyl group as an 1,3oxathiolane is an important one due to the following applications; they are used as acyl carbanion equivalents¹⁶⁵ for the formation of carbon-carbon bonds. They also serve as valuable starting materials for the enantioselective synthesis of tertiary α -hydroxy aldehydes, α -hydroxy acids and glycols, first demonstrated by Eliel and his co-workers.¹⁶⁵ Later on, Utimoto and his group had also shown¹⁶⁶ the application of chiral 1,3-oxathiolane in organic synthesis. In addition, the use of O,S-acetals is more straightforward than the corresponding O,O-acetals or S,S-acetals. Although a large number of methods have been developed for the preparation of dithioacetals and their deprotection to carbonyl compounds,¹ only a few methods are known for oxathioacetals.¹ The existing methods for protection available are: either refluxing carbonyl compounds with 2-mercaptoethanol in benzene in the presence of catalytic amount of p-toluenesulfonic acid¹⁶⁷ or equimolar boron trifluoride etherate, ¹⁶⁸ or ZnCl₂, ¹⁶⁹ or a catalytic amount of CF₃SO₃SiMe₂ (TMSOTf).¹⁷⁰All these methods have some drawbacks such as harsh reaction conditions,^{167, 168} long reaction times,¹⁶⁹ expensive reagent (TMSOTf)¹⁷⁰ as well as difficulty in handling. Similarly, only a few methods are known for deprotection of 1,3-oxathiolanes into the corresponding carbonyl compounds.149-151

Isoamyl nitrite is one of the efficient reagents applied for the deprotection of 1,3-oxathiolanes in reasonable yields, by simply stirring a solution of 1,3-oxathiolanes in dichloromethane with isoamyl nitrite (*Table 9*, entries 12, 16, and 22).¹⁵¹ Development of mild protocols for protection and deprotection of carbonyl compounds has been the focus of increased current interest. Recently, *p*-nitrobenzaldehyde/TMSOTf was introduced as a useful reagent for deprotection of 1,3-oxathiolanes. Thus when 1,3-oxathioacetals were treated with an equivalent amount of *p*-nitrobenzaldehyde in the presence of catalytic amounts of TMSOTf in dichloromethane at room temperature, the corresponding carbonyl compounds were obtained readily *via* transoxathioacetalization (*Scheme 19, Table 9*, entries 1, 6, 13, 17, 18 and 20).¹⁷¹

Table 9. Deprotection of 1,3-Oxathiolanes

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
1	o 8 Ph Ph	TMSOTf/4-nitrobenzaldehyde	CH ₂ Cl ₂	rt/5min	94	171
2		TMSOTf	Not reported	rt/10min	82	170
3		AgNO ₂	THF	rt/0.5h	96	149
4		H2MoO4•H2O-H2O2	CH ₂ Cl ₂ / H ₂ O	0-5°C/2.5h	80	176
5		TMSOTf	Not reported	rt/12h	50	170
6	O Ph CH ₃	TMSOTf/4-nitrobenzaldehyde	CH ₂ Cl ₂	rt/5min	86	171
7		TMSOTf/PSB ^a	CH ₂ Cl ₂	rt/3h	89	174
8		TMSOTf	Not reported	rt/10min	72	170
9		H2MoO4•H2O-H2O2	CH ₂ Cl ₂ /H ₂ O	0-5°C/2.25h	72	176
10	o Ph CH ₂ CH ₃	TMSOTf/PSB*	CH ₂ Cl ₂	rt/2h	96	174
11		TMSOTf	Not reported	rt/15min	69	170
12		H Isoamyl nitrite	CH ₂ Cl ₂	rt/1.2h	93	151
13	MHO Ý	TMSOTf/4-nitrobenzaldehyde	CH ₂ Cl ₂	rt/5min	93	171
14		TMSOTf/PSB [®]	CH ₂ Cl ₂	rt/3h	83	174
15	_	H ₂ MoO ₄ .H ₂ O-H ₂ O ₂	CH ₂ Cl ₂ / H ₂ O	0-5°C/2.5h	92	176
¹⁶		s Isoamyl nitrite	CH ₂ Cl ₂	rt/1.25h	70	151
17		n = 2 TMSOTf/4-nitrobenzaldehyde	CH ₂ Cl ₂	rt/5min	78	171
18	° S	n = 7 TMSOTf	CH ₂ Cl ₂	rt/5min	90	171
19	(°n	$n = 7 H_2 MoO_4 \bullet H_2 O - H_2 O_2$	CH ₂ Cl ₂ /H ₂ O	0-5℃/4h	96	176
20	° ∕ ⁵	TMSOTf/4-nitrobenzaldehyde	CH ₂ Cl ₂	rt/5min	83	171
21	~ `	TMSOTf/PSB*	CH ₂ Cl ₂	rt/3h	96	174

Entry	Cmpd	Reagent	Solvent	Temp./Time	Yield (%)	Ref
22	O H-C(H-C)- H	Isoamyl nitrite	CH ₂ Cl ₂	rt/1.5h	64	151
23		H2MoO4•H2O-H2O2	CH2CL/H2O	0-5°C/1.5h	90	175
²⁴ ом		AgNO ₃	THF	rt/5h	83	149
²⁵ ом	°₩• •-<	AgNO3	THF	rt/5h	94	149
26		AgNO ₃	THF	rt/lh	61	149
27) _{H5} 106	Ether/THF	rt/10	98	150
28		R=H H ₅ IO ₆	Ether/THF	rt/10min	90	150
29		R=Me H ₅ IO ₆	Ether/THF	rt/10min	95	150

Table 9. Continued...

a) Polymer-supported benzaldehyde (PSB)

Based on successful use of *p*-nitrobenzaldehyde as efficient acceptor in deprotection of oxathioacetals, it seems that if nitrobenzaldehyde were to be supported on a polymer, the polymer-supported nitrobenzaldehyde by-product would be insoluble, thus facilitating straightforward work-up and recovery of the carbonyl compounds. Thus polymer-supported nitrobenzaldehyde **25** was prepared from 20% chloromethylated polystyrene (4% cross-linked) by nitration,¹⁷² followed by oxidation (*Scheme 20*).¹⁷³ When oxathioacetals were treated with the

functionalized polymer 25 in the presence of TMSOTf as the catalyst in dichloromethane at room temperature, the corresponding carbonyl compounds were obtained cleanly in excellent yields (*Table 9*, entries 7, 10, 14 and 21).¹⁷⁴

TMSOTf alone has been also employed as a mild, efficient and versatile catalyst to effect the facile conversion of carbonyl compounds to oxathiolanes and vice-versa under essentially identical conditions (*Scheme 21*). Oxathiolanes were prepared by stirring the mixture of

carbonyl compounds and mercaptoethanol in the presence of TMSOTf (cat.), at room temperature. Interestingly, it was observed that activated oxathiolanes (R_1 or R_2 = aryl group), when subjected to the treatment of the same catalyst (TMSOTf), could be converted to carbonyl compounds in high yields. It is obvious that the presence of an aryl ring seems to be an essential factor for successful transformation of oxathiolanes to carbonyl compounds (*Table 9*, entries 2, 5, 8 and 11).¹⁷⁰ Surprisingly, some of these methods have serious drawbacks such as difficulties in removing the by-product of 1,3-oxathiolanes derived from 4-nitrobenzaldehyde¹⁷¹ which requires expensive polymer supported reagents¹⁷⁴ and sometimes they fail to deprotect the oxathioacetals of non-aromatic compounds, in addition to requiring long reaction times.¹⁷⁰

Some other methods are also well known based on halonium ion sources such as I_2 silver salts. Silver perchlorate, silver nitrite, silver nitrate, silver acetate or silver carbonate-iodine system are effective for demonothioacetalization. Among these reagents, a silver nitrite-iodine system was commendable from the points of efficiency and safety (*Table 9*, entries 3 and 24-26). The combination of a silver salt and iodine was essential. This fact suggests that the active species of this reagent system would be I⁺. A possible mechanism for this reaction is illustrated in *Scheme 22*. An application of this deprotective reagent system was demonstrated in the synthesis of optically active α -hydroxy aldehydes using chiral 1,3-oxathianes.¹⁴⁹

Unfortunately, these methods also suffer because of a large molar excess of expensive reagents such as the silver salts. Therefore there is still a need to develop alternative methods for the protection as well as deprotection of carbonyl compounds. Periodic acid in non-aqueous solution is an efficient method to convert oxathioacetals to the corresponding carbonyl compounds

under mild conditions (*Table 9*, entries 27-29). A notable advantage of this method is its simplicity and ease of work-up of the reaction. An additional benefit is that after the reaction is complete, there is no smell of thiol, which makes this method very attractive, particularly for large-scale preparations.¹⁵⁰

The ability of diperoxomolybdate(VI) to oxidize bromide ion,¹⁷⁵ led to the idea that a H_2MoO_4 , $H_2O-H_2O_2$ catalyzed oxidation of ammonium bromide could be utilized for cleavage of 1,3-oxathiolanes. A wide variety of carbonyl compounds can be easily protected to the corresponding 1,3-oxathiolanes in good yields, in the presence of catalytic amounts of perchloric acid in dry CH_2Cl_2 at 0-5°C. On the other hand, various 1,3-oxathiolanes can be selectively deprotected to the parent carbonyl compounds in very good yields by H_2MoO_4 , $H_2O-H_2O_2$ catalyzed oxidation of ammonium bromide in the presence of perchloric acid in CH_2Cl_2/H_2O solvent system (*Table 9*, entries 4, 9, 15, 19 and 23). Mild conditions, high selectivity, efficiency and relatively good yields are some of the major advantages of the procedure. In addition, these chemicals are environmentally acceptable.¹⁷⁶

Acknowledgements.- We gratefully acknowledge the funding support received for this project from the Isfahan University of Technology (IUT), IR Iran and Grants GM 33138, MH65503 and NS33650, from the National Institutes of Health, USA. Further financial support from Center of Excellence in Chemistry Research (IUT) is gratefully acknowledged.

REFERENCES

- T. W. Greene and P. G. M. Wuts, "Protective Groups in Organic Synthesis", 3rd Edition, John Wiley and Sons, New York, NY, 1999.
- A. R. Katritzky, O. Meth-Cohn and C. W. Rees, "Comprehensive Organic Functional Group Transformation", 1st Edition, Vol. 3, Pergamon, New York, NY, 1995
- 3. J. R. Maloney and R. E. Lyle, Synthesis, 212, (1978).
- 4. J. S. Yadav P. K. Sasmal and P. K. Chand, Synth. Commun., 29, 3667 (1999).
- 5. J. G. Lee, K. H. Kwak and J. P. Hwang, Tetrahedron Lett., 31, 6677 (1990).
- 6. P. Gray and A. D. Yoffe, Quart. Rev., 9, 376 (1955).
- 7. S. B. Shim, K. Kim and Y. H. Kim, Tetrahedron Lett., 28, 645 (1987).
- 8. H. Firouzabadi, E. Mottaghineiad and M. Seddighi, Synth. Commun., 19, 3469 (1989).
- 9. A. S. Demir, C. Tanyeli and E. Altinel, Tetrahedron Lett., 38, 7267 (1997).
- H. Firouzabadi, M. Seddighi, Z. Arab Ahmadi and A. R. Sardarian, Synth. Commun., 19, 3385 (1989).

- 11. I. Mohammadpoor Baltork and Sh. Pouranshirvani, Synth. Commun., 26,1 (1996).
- A. R. Hajipour, I. Mohammadpoor Baltork and K. Niknam, Org. Prep. Proced. Int., 31, 112 (1999).
- 13. H. Firouzabadi, N. Iranpoor, F. Kiaeezadeh and J. Toofan, Tetrahedron, 42, 719 (1986).
- 14. D. S. Bose and A. V. Narsaiah, Synth. Commun., 29,937 (1999).
- 15. R. Annunzian, M. Cinquini and F. Cozzi, J. Chem. Soc., Perkin Trans. 1, 1689 (1979).
- 16. A. R. Hajipour and N. Mahboubghah, J. Chem. Research (S), 122 (1998).
- 17. A. R. Hajipour and S. E. Mallakpour, Phosphorus, Sulfur and Silicon, 161, 157 (2000).
- I. Mohammadpoor Baltork, A. R. Hajipour and R. Haddadi, J. Chem. Research (S), 102 (1999).
- 19. A. R. Hajipour, I. Mohammadpoor Baltork and G. Kianfar, Ind. J. Chem., 36B, 221 (1999).
- R. L. Garrett, in "Designing Safer Chemicals", American Chemical Society Symposium Series 640: Washington, DC, 1 (1996).
- 21. B. C. Ranu and D. C. Sarkar, J. Org. Chem., 53, 878 (1988).
- 22. R. Ballini and M. Petrini, J. Chem. Soc., Perkin Trans. 1, 2563 (1988).
- 23. H. Suzuki, T. Ikegami and Y. Matano, Synthesis, 249 (1997).
- 24. H. Firouzabadi and I. Mohammadpoor Baltork, Synth. Commun., 24, 489 (1994).
- 25. B. A. Nattier, K. J. Eash and R. S. Mohan, Synthesis, 1010 (2001).
- 26. A. R. Hajipour, S. E. Mallakpour, I. Mohammadpoor Baltork and H. Adibi, *Synth. Commun.*, **31**, 3401 (2001).
- 27. J. O. Nriagu and E. Nieboer, "Chromium in the Natural and Human Environment", John Wiley & sons New York, NY, 1988.
- R. J. Giguere, T. L. Bray, S. M. Duncan and G. Majetich, *Tetrahedron Lett.*, 27, 4945 (1986).
- 29. R. Abramovitch, Org. Prep. Proc. Int., 23, 685 (1991).
- 30. D. M. P. Migos and D. R. Baghursy, Chem. Soc. Rev., 20, 1 (1991).
- 31. S. Caddick, Tetrahedron, 51, 10403 (1995).

- 32. A. Loupy, A. Petit, M. Ramdiani, C. Yvanaeff, M. B. Majdoub Labiad and D. Villemin, *Can. J. Chem.*, **71**, 90 (1993).
- 33. R. Sanabria, R, Miranda, V. Lara and F. Delgado, Synth. Commun., 24,2805 (1994).
- "Ullman's Encyclopedia of Industrial Chemistry", 5th edition, VCH, Federal Republic of Germany, Vol A-15, pp 231-235, 1990.
- 35. L. S. Greenslade, Brit. Chem. Eng., 2, 664 (1957).
- 36. H. Goetz, W. Ruettiger, W. Ruemens and R. Zeidler, Teintex, 29, 153 (1964); CA, 425982.
- 37. V. Lore and C. L. Mariotto, Met. ABM. 21, 565 (1965); CA, 469748.
- H. M. Meshram, G. S. Reddy, D. Srinivas and J. S. Yadav, Synth. Commun., 28, 2593 (1998).
- 39. G. S. Zhang, D. H. Yang, M. F. Chen and K Cai, Synth. Commun., 28, 2221 (1998).
- 40. A. R. Hajipour and S. E. Mallakpour, Mol. Cryst. and Liq. Cryst., 356, 371 (2001).
- 41. A. R. Hajipour, S. E. Mallakpour, I. Mohammadpoor Baltork and S. Khoee, Synth. Commun., 31, 1187 (2001).
- 42. R. S. Varma and H. M. Meshram, Tetrahedron Lett., 38, 5427 (1997).
- 43. R. S. Varma, R. Dahiya and R. K. Saini, Tetrahedron Lett., 38, 8819 (1997).
- 44. M. Ghiaci and J. Asghari, Synth. Commun., 30, 3865 (2000).
- 45. P. M. Bendale and M. Khadilkar, Tetrahedron Lett., 39, 5867 (1998).
- 46. A. Boruah, B. Baruah, D. Prajapati and J. S. Sandhu, Tetrahedron Lett., 38, 4267 (1997).
- 47. A. R. Hajipour, S. E. Mallakpour and S. Khoee, Synth. Commun., 32, 9 (2002).
- 48. D. N. Kirk and C. J. Slade, Tetrahedron Lett., 21, 651 (1980).
- 49. W. F. McGuckin and E. C. Kendall, J. Am. Chem. Soc., 74, 5811 (1952).
- 50. A. E. Gillam and T. F. West, J. Chem. Soc., 95 (1945).
- 51. E. B. Hershberg, J. Org. Chem., 13, 542 (1948).
- 52. E. J. Eisenbraum, R. P. Wesley, R. S. Budhram and B. Dewprasad, *Chem. Ind. (London)*, 549 (1989).
- 53. M. Curini, O. Rosati, E. Pisani and U. Costantino, Synlett, 333 (1996).

- 54. R. N. Butler, G. J. Morris and A. M. O'Donohue, J. Chem. Research (S), 61, (1981).
- 55. M. Salmon, R. Miranda and E. Angeles, Synth. Commun., 16, 1827 (1986).
- 56. S. Narayanan and V. S. Srinivasan, J. Chem. Soc., Perkin Trans. 2, 1557 (1986).
- 57. R. N. Ram and K. Varsha, Tetrahedron Lett., 32, 5829 (1991).
- 58. A. R. Hajipour and N. Mahboobkhah, Synth. Commun., 28, 3143 (1998).
- 59. G. S. Zhang, H. Gong, D. H. Yang and M. F. Chen, Synth. Commun., 29, 1165 (1999).
- 60. P. Lazlo and E. Polla, Synthesis, 439 (1985).
- 61. N. Kazunobu and T. Kanetsugu, Chem. Abstr., 80, 16373m (1974).
- 62. J. P. Zumbrunn, Chem. Abstr., 80, 19176k (1974).
- 63. W. E. Fristad and J. R. Peterson, Tetrahedron Lett., 24, 4547 (1983).
- 64. A. Clerici, F. Minisci, K. Ogawa and J. M. Surzur, Tetrahedron Lett., 19, 1149 (1978).
- V. M. Tryupina, R. Kh. Almaev, A. Z. Bikkulov, V. M. Kalinina and G. A. Baiguzina, Chem. Abstr., 105, 152926f (1986).
- S. G. Brooks, R. M. Evans, G. F. H. Green, J. S. Hunt, A. G. Long, B. Mooney and L. J. Wyman, J. Chem. Soc., 4614 (1958).
- 67. R. S. Varma and H. M. Meshram, Tetrahedron Lett., 38, 7973 (1997).
- 68. F. Huet, A. Lechevallier, M. Pellet and J. M. Conia, J. Chem. Research (S), 63 (1978).
- 69. J. N. Denis and A. Krief, Angew. Chem. Int. Ed. Engl., 19, 1006 (1980).
- 70. G. Balme and J. Gore, J. Org. Chem., 48, 3336 (1983).
- 71. Y. Guindon, H. E. Morton and C. Yoakim, Tetrahedron Lett., 24, 3969 (1983).
- 72. B. H. Lipshutz, D. Pollart, J. Monforte and H. Kotsuki, Tetrahedron Lett., 26, 705 (1985).
- 73. M. V. Bhatt and J. R. Babu, Tetrahedron Lett., 25, 3497 (1984).
- 74. J. R. Babu and M. V. Bhatt, Tetrahedron Lett., 27, 1073 (1986).
- 75. E. R. Kline, B. N. Compbell and E. C. Spaeth, J. Org. Chem., 24, 1781 (1959).
- 76. J. Broome, B. R. Brown and G. H. R. Suminers, J. Chem. Soc., 2071 (1957).

- 77. P. Sarmah and N. C. Barua, Tetrahedron Lett., 29, 5815 (1988).
- 78. P. Sarmah and N. C. Barua, Tetrahedron, 45, 3569 (1989).
- 79. P. Sarmah and N. C. Barua, Tetrahedron Lett., 30, 4703 (1989).
- 80. E. Keinan, D. Perez, M. Sahai and R. Shvily, J. Org. Chem., 55, 2927 (1990).
- 81. K. Tanemura, T. Suzuki and T. Horaguchi, J. Chem. Soc., Chem. Commun., 979 (1992).
- 82. S. H. Wu and Z. B. Ding, Synth. Commun., 24, 2173 (1994).
- G. Bartoli, E. Marcantoni, L. Sambri and M. Petrini, J. Chem. Soc., Chem. Commun., 715 (1994).
- G. Bartoli, E. Marcantoni, L. Sambri and M. Tamburini, Angew. Chem. Int. Ed. Engl., 34, 2046 (1995).
- 85. G. Bartoli, E. Marcantoni, M. Petrini and L. Sambri, Chem. Eur. J., 2, 973 (1996).
- E. Marcantoni, F. Nobili, G. Bartoli, M. Bosco and L. Sambri, J. Org. Chem., 62, 4183 (1997).
- 87. H. Firouzabadi, N. Iranpoor and B. Karimi, J. Chem. Research (S), 664 (1998).
- P. Saravanan, M. Chandrasekhar, R. Vijaya Anand and V. K. Singh, *Tetrahedron Lett.*, 39, 3091 (1998).
- 89. I. Mohammadpoor Baltork and A. R. Nourozi, Synthesis, 487 (1999).
- R. Curci, L. D'Accolti, M. Fiorentino, C. Fusco, W. Adam, M. E. Gonzalez and R. Mello, *Tetrahedron Lett.*, 33, 4225 (1992).
- 91. P. Gros, P. Le Perchec and J. P. Senet, J. Chem. Research (S), 196 (1995).
- A. R. Hajipour, S. E. Mallakpour, I. Mohammadpoor Baltork and H. Adibi, *Phosphorus, Sulfur and Silicon*, 165, 155 (2000).
- 93. G. M. Caballero and E. G. Gros, Synth. Commun., 25, 395 (1995).
- E. C. L. Gautier, A. E. Graham, A. McKillop, S. P. Standen and R. J. K. Taylor, *Tetrahe*dron Lett., 38, 1881 (1997).
- A. R. Hajipour, S. E. Mallakpour, I. Mohammadpoor Baltork and H. Backnezhad, Synth. Commun., 32, 779 (2002).
- H. M. Meshram, G. Sumithra, G. S. Reddy, Y. S. Ganesh and J. S. Yadav, Synth. Commun., 29, 2807 (1999).

- A. R. Hajipour, S. E. Mallakpour, I. Mohammadpoor Baltork and S. Khoee, Synth. Commun., 32, 611 (2002).
- 98. F. Freeman and E. M. Karcherski, J. Chem. Eng. Data, 22, 355 (1977).
- 99. I. Scriabine, Bull. Soc. Chim. Fr., 1194 (1961).
- 100. J. K. Michie and J. A. Miller, Synthesis, 824 (1981).
- 101. G. A. Olah and C. S. Mehrotra, Synthesis, 962 (1982).
- 102. M. V. Joshi and C. S. Narasimbam, J. Catal., 141, 308 (1993).
- 103. P. KumarV. R. Hedge and T. P. Kumar, Tetrahedron Lett., 36, 601 (1995).
- C. Pereira, B. Gigante, M. J. Arcelo-Curto, H. Carreyre, G. Perot and M. Guisnet, Synthesis, 1077 (1995).
- 105. S. V. Raju, J. Chem. Research (S), 68 (1996).
- 106. T. S. Jin, G. Y. Du, Z. H. Zhang and T. S. Li, Synth. Commun., 27, 2261 (1997).
- 107. S. V. Lieberman and R. Connor, Org. Syn., Coll. Vol. 2, pp 441.
- 108. S. M. Tsang, E. H. Wood and J. R. Johnson, Org. Syn., Coll. Vol. 3, pp 641.
- 109. R. E. Banks, J. A. Miller, M. J. Nunn, P. Stanley, T. J. R. Weakley and Z. Ullah, J. Chem. Soc. Perkin Trans. 1, 1096 (1981).
- 110. B. B. Snider and S. G. Amin, Synth. Commun., 8, 117 (1978).
- 111. K. S. Kochhar, B. S. Bal, R. P. Deshpande, S. N. Rajadhyaksha and H. W. Pinnick, J. Org. Chem., 48, 1765 (1983).
- 112. C. Narayana, S. Padnanabhan and G. W. Kabalka, Tetrahedron Lett., 31, 6977 (1990).
- 113. P. Cotelle and J. P. Catteau, Tetrahedron Lett., 33, 3855 (1992).
- 114. T. S. Jin, Y. R. Ma, Z. H. Zhang and T. S. Li, Synth. Commun., 27, 3379 (1997).
- 115. D. Villemin and B. Martin, J. Chem. Research (S), 146 (1994).
- 116. E. R. Perez, A. L. Marrero, R. Perez and M. A. Autie, Tetrahedron Lett., 36, 1779 (1995).
- 117. T. S. Li, Z. H. Zhang and C. G. Fu, Tetrahedron Lett., 38, 3285 (1997).
- 118. Y. S. Angelis and J. Smonou, Tetrahedron Lett., 38, 8109 (1997).

- R. Ballini, M. Bordoni, G. Bosica, R. Maggi and G. Sartori, *Tetrahedron Lett.*, 39, 7587 (1998).
- 120. T. Satoh, S. Uwaya and K. Yamakawa, Chemistry Lett., 667 (1986).
- 121. B. H. Lipshutz, R. Moretti and R. Crow, Tetrahedron Lett., 30, 15 (1990).
- 122. G. Guanti, L. Banfi, S. Brusco and R. Riva, Tetrahedron Lett., 34, 8549 (1993).
- 123. H. J. Liu, W. L. Yeh and S. Y. Chew, Tetrahedron Lett., 34, 4435 (1993).
- 124. R. P. Hatch, J. Shringarpure and S. M. Weinreb, J. Org. Chem., 43, 4172 (1978).
- 125. D. A. Evans, L. K. Truesdale, K. G. Grimm and S. L. Nesbitt, J. Am. Chem. Soc., 99, 5009 (1977).
- 126. B. S. Ong, Tetrahedron Lett., 21, 4225 (1980).
- 127. V. Kumar and S. Dev, Tetrahedron Lett., 24, 1289 (1983).
- 128. L. Garlaschelli and G. Vidari, Tetrahedron Lett., 31, 5815 (1990).
- 129. H. Tani, K. Masumoto, T. Inamasu and H. Suzuki, Tetrahedron Lett., 32, 2039 (1991).
- 130. B. Ku and D. Y. Oh, Synth. Commun., 19, 433 (1989).
- 131. T. Sato, J. Otera and H. Nozaki, J. Org. Chem., 58, 4971 (1993).
- 132. J. A. Marshall and J. L. Belletire, Tetrahedron Lett., 871 (1971).
- 133. A. Pasquarello, G. Poli and C. Scolastico, Synlett, 93 (1992).
- 134. Y. Honda, A. Ori and G. Tsuchihashi, Chemistry Lett., 1259 (1987).
- 135. Y. Kamitori, M. Hojo, R. Masuda, T. Kimura and T. Yoshida, J. Org. Chem., 51, 1427 (1986).
- 136. D. Villemin, B. Labiad and M. Hammadi, J. Chem. Soc., Chem. Commun., 1192 (1992).
- 137. Y. Zhang, Y. Yu and R. Lin, Org. Prep. Proced. Int., 25, 365 (1993).
- 138. W. E. Savige and A. Fontana, J. Chem. Soc., Chem. Commun., 599 (1976).
- 139. I. Stahl, Synthesis, 135 (1981).
- 140. J. Degani, R. Fochi and V. Regondi, Synthesis, 51 (1981).

- G. Capozzi, V. Lucchini, G. Modena and F. Rivetti, J. Chem. Soc. Perkin Trans. 2, 900 (1975).
- 142. M. Prato, U. Quintily, G. Corrano and A. Sturaro, Synthesis, 679 (1982).
- 143. J. Cossy, Synthesis, 1113 (1987).
- 144. A. J. Bard, A. Ledwith and H. J. Shine, Adv. Phys. Org. Chem., 13, 155 (1976).
- 145. M. Kamata, H. Otogawa and E. Hasegawa, Tetrahedron Lett., 32, 7421 (1991).
- 146. E. Vedejs and P. L. Fuchs, J. Org. Chem., 36, 366 (1971).
- 147. J. A. Soderquist and E. I. Miranda, J. Am. Chem. Soc., 114, 10078 (1992).
- 148. S. A. Haroutounian, Synthesis, 39 (1995).
- 149. K. Nishide, D. Nakamura, K. Yokota, T. Sumiya, M. Node, M. Ueda and K. Fuji, *Heterocycles*, 44, 393 (1997).
- 150. X. X. Shi, S. P. Khanapure and J. Rokach, Tetrahedron Lett., 37, 4331 (1996).
- 151. K. Fuji, K. Ichikawa and E. Fujita, Tetrahedron Lett., 3561 (1978).
- L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", John Wiley & Sons, New York, NY, pp. 737, 1967.
- 153. G. Mehta and R. Uma, Tetrahedron Lett., 37, 1897 (1996).
- 154. R. Ballini and M. Petrini, Synthesis, 336 (1990).
- 155. M. Hirano, K. Ukagawa, S. Yakabe, J. H. Clark and T. Morimoto, Synthesis, 858 (1997).
- 156. A. Cornelis and P. Laszlo, Synthesis, 849 (1980).
- 157. M. Balogh, A. Cornelis and P. Laszlo, Tetrahedron Lett., 25, 3313 (1984).
- 158. A. Cornelis and P. Laszlo, Synthesis, 909 (1985).
- 159. M. Hirano, K. Ukagawa, S. Yakabe and T. Morimoto, Synth. Commun., 27, 1527 (1997).
- 160. H. M. Meshram, G. S. Reddy and J. S. Yadav, Tetrahedron Lett., 38, 8891 (1997).
- M. Kamata, Y. Murakami, Y. Tamagawa, M. Kato and E. Hasegawa, *Tetrahedron*, 50, 12821 (1994).
- 162. F. Toda, Synlett, 303 (1993).

- 163. F. Toda, Acc. Chem. Res., 28, 480 (1955).
- 164. R. S. Varma and R. K. Saini, Tetrahedron Lett., 38, 2623 (1997).
- 165. E. L. Eliel and S. Morris-Natschke, J. Am. Chem. Soc., 106, 2943 (1984).
- 166. K. Utimoto, A. Nakamura and S. Matsubara, J. Am. Chem. Soc., 112, 8189 (1990).
- 167. C. Djerassi and M. Gorman, J. Am. Chem. Soc., 75, 3704 (1953).
- 168. G. E. Wilson, Jr. M. G. Huang and W. W. Schloman, Jr., J. Org. Chem., 33, 2133 (1968).
- 169. A. G. Fallis and V. K. Yadav, Tetrahedron Lett., 29, 897 (1988).
- 170. T. Ravindranathan, S. P. Chavan and S. W. Dantale, Tetrahedron Lett., 36, 2285 (1995).
- 171. T. Ravindranathan, S. P. Chavan, J. S. Varghese, S. W. Dantale and R. B. Tejwani, J. Chem. Soc., Chem. Commun., 1937 (1994).
- 172. R. B. Merrifield, J. Am. Chem. Soc., 106, 2943 (1984).
- 173. M. J. Frechet and G. Pelle, J. Chem. Soc., Chem. Commun., 225 (1975).
- 174. T. Ravindranathan, S. P. Chavan and M. M. Awachat, Tetrahedron Lett., 35, 8835 (1994).
- 175. G. E. Meister and Butler, Inorg. Chem., 33, 3269 (1994).
- 176. E. Mondal, P. R. Sahu and A. T. Khan, Synlett, 463 (2002).

(Received September 4, 2002; in final form September 3, 2003)